期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于多类型情景信息的兴趣点推荐模型 被引量:4
1
作者 胡德敏 杨晨 《计算机应用研究》 CSCD 北大核心 2018年第6期1636-1640,1675,共6页
当前最新的兴趣点推荐工作开始融合地理、文本和社交信息进行推荐,但是还存在信息挖掘不充分的情况。为此,提出了改进的多类型信息融合的联合概率生成的兴趣点推荐模型。首先提出了自动学习文档话题数目的分层狄利克雷过程主题模型,学... 当前最新的兴趣点推荐工作开始融合地理、文本和社交信息进行推荐,但是还存在信息挖掘不充分的情况。为此,提出了改进的多类型信息融合的联合概率生成的兴趣点推荐模型。首先提出了自动学习文档话题数目的分层狄利克雷过程主题模型,学习用户和兴趣点相关兴趣话题;同时,利用由签到分布决定带宽大小的核密度估计法,个性化地理信息对用户签到行为的影响,而且还融合了用户位置访问序列中已访问兴趣点对待访问兴趣点的影响,即序列模式的影响;然后综合考虑了用户社交关系的影响;最后基于联合概率生成模型,融合文本、地理、社会和序列信息,提出TGSS-PGM兴趣点推荐模型,依据计算结果从而生成兴趣点推荐列表推荐给用户。实验结果表明,该模型在推荐准确率等多种评价指标上都取得了更好的结果。 展开更多
关键词 基于位置的社交网络 兴趣点推荐 隐马尔可夫链 核密度估计 话题模型 社交影响
下载PDF
Origin of Dynamic Correlations of Words in Written Texts
2
作者 Hiroshi Ogura Hiromi Amano Masato Kondo 《Journal of Data Analysis and Information Processing》 2019年第4期228-249,共22页
In a previous study, we introduced dynamical aspects of written texts by regarding serial sentence number from the first to last sentence of a given text as discretized time. Using this definition of a textual timelin... In a previous study, we introduced dynamical aspects of written texts by regarding serial sentence number from the first to last sentence of a given text as discretized time. Using this definition of a textual timeline, we defined an autocorrelation function (ACF) for word occurrences and demonstrated its utility both for representing dynamic word correlations and for measuring word importance within the text. In this study, we seek a stochastic process governing occurrences of a given word having strong dynamic correlations. This is valuable because words exhibiting strong dynamic correlations play a central role in developing or organizing textual contexts. While seeking this stochastic process, we find that additive binary Markov chain theory is useful for describing strong dynamic word correlations, in the sense that it can reproduce characteristics of autocovariance functions (an unnormalized version of ACFs) observed in actual written texts. Using this theory, we propose a model for time-varying probability that describes the probability of word occurrence in each sentence in a text. The proposed model considers hierarchical document structures such as chapters, sections, subsections, paragraphs, and sentences. Because such a hierarchical structure is common to most documents, our model for occurrence probability of words has a wide range of universality for interpreting dynamic word correlations in actual written texts. The main contributions of this study are, therefore, finding usability of the additive binary Markov chain theory to analyze dynamic correlations in written texts and offering a new model of word occurrence probability in which common hierarchical structure of documents is taken into account. 展开更多
关键词 AUTOCORRELATION FUNCTION AUTOCOVARIANCE FUNCTION Word Occurrence Stochastic Process additive Binary markov chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部