为了解决射频识别(Radio Frequency IDentification,RFID)系统中的多标签防碰撞问题,在分析帧时隙ALOHA算法的基础上,提出一种基于分组自适应分配时隙的RFID防碰撞算法(GAAS).首先让阅读器对标签随机所选的时隙进行扫描统计,并将其发送...为了解决射频识别(Radio Frequency IDentification,RFID)系统中的多标签防碰撞问题,在分析帧时隙ALOHA算法的基础上,提出一种基于分组自适应分配时隙的RFID防碰撞算法(GAAS).首先让阅读器对标签随机所选的时隙进行扫描统计,并将其发送给每一个标签,标签再进行相应地时隙调整,使阅读器跳过空闲时隙和碰撞时隙,自适应地分配有效时隙,进而对标签进行快速识别.当未识别标签数比较大时,算法采用分组以及动态调整帧长等策略,以减少时隙处理的时间.仿真结果表明:GAAS算法提高了系统的识别效率和稳定性,降低了传输开销.特别是当标签数超过1000时,该算法的吞吐率仍保持在71%以上,比传统的帧时隙ALOHA-256算法和分组动态帧时隙ALOHA算法的系统效率分别提高了300%和97.2%.展开更多
文摘为了解决射频识别(Radio Frequency IDentification,RFID)系统中的多标签防碰撞问题,在分析帧时隙ALOHA算法的基础上,提出一种基于分组自适应分配时隙的RFID防碰撞算法(GAAS).首先让阅读器对标签随机所选的时隙进行扫描统计,并将其发送给每一个标签,标签再进行相应地时隙调整,使阅读器跳过空闲时隙和碰撞时隙,自适应地分配有效时隙,进而对标签进行快速识别.当未识别标签数比较大时,算法采用分组以及动态调整帧长等策略,以减少时隙处理的时间.仿真结果表明:GAAS算法提高了系统的识别效率和稳定性,降低了传输开销.特别是当标签数超过1000时,该算法的吞吐率仍保持在71%以上,比传统的帧时隙ALOHA-256算法和分组动态帧时隙ALOHA算法的系统效率分别提高了300%和97.2%.