期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cancellation of nonlinear distortion based on integration of FCM clustering algorithm and adaptive-two-stage linear approximation 被引量:1
1
作者 WANG Gui-ye ZOU Wei-xia +2 位作者 WANG Zhen-yu DU Guang-long GAO Ying 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2014年第3期18-22,共5页
A hybrid system of the fuzzy c-means (FCM) clustering algorithm and adaptive-two-stage linear approximation was presented for nonlinear distortion cancellation of radio frequency (RF) power amplifier (PA). This ... A hybrid system of the fuzzy c-means (FCM) clustering algorithm and adaptive-two-stage linear approximation was presented for nonlinear distortion cancellation of radio frequency (RF) power amplifier (PA). This mechanism can effectively eliminate noise, adaptively model PA's instantaneous change, and efficiently correct nonlinear distortion. This article puts forward the FCM clustering algorithm for clustering received signals to eliminate white noise, and then uses the adaptive-two-stage linear approximation to fit the inverse function of the amplitude's and phase's nonlinear mapping during the training phase. Parameters of the linear function and similarity function are trained using the gradient-descent and minimum mean-square error criteria. The proposed approach's training results is directly employed to eliminate sampling signal's nonlinear distortion. This hybrid method is realized easier than the multi-segment linear approximation and could reduce the received signal's bit error rate (BER) more efficiently. 展开更多
关键词 PA nonlinear distortion cancellation FCM clustering algorithm similarity function adaptive-two-stage linear approximation
原文传递
SINS/视觉组合导航系统融合算法 被引量:1
2
作者 高伟 叶攀 许伟通 《压电与声光》 CAS CSCD 北大核心 2016年第5期760-765,共6页
捷联惯性导航系统(SINS)/视觉组合导航系统的融合算法主要是卡尔曼滤波,卡尔曼滤波实现最优估计的前提是系统的模型必须准确已知。对于SINS/视觉组合导航系统,获取量测信息需经图像处理、特征点提取和匹配等过程,使量测噪声统计模型不... 捷联惯性导航系统(SINS)/视觉组合导航系统的融合算法主要是卡尔曼滤波,卡尔曼滤波实现最优估计的前提是系统的模型必须准确已知。对于SINS/视觉组合导航系统,获取量测信息需经图像处理、特征点提取和匹配等过程,使量测噪声统计模型不完全可知,这会导致卡尔曼滤波器的估计精度下降。因此,该文提出一种改进的自适应两级卡尔曼滤波,根据求解遗传因子的不同方法对传统自适应两级卡尔曼滤波进行改进。改进后的算法分别适用于系统噪声统计模型和量测噪声统计模型不准确可知两种情况,且二者具有统一的滤波框架。仿真结果表明,改进的自适应两级卡尔曼滤波比卡尔曼滤波精度高,有效解决了SINS/视觉组合导航系统因噪声统计模型不准确导致的精度下降问题。 展开更多
关键词 组合导航系统 自适应两级卡尔曼滤波 遗忘因子 随机偏差 噪声模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部