For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly...For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.展开更多
To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guid...To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guidance law is developed using the fast nonsingular terminal sliding mode control theory. However, the guidance law requires the upper bound of lumped uncertainty including target acceleration, which may not be accurately obtained. Therefore, by adopting a novel reaching law, an adaptive sliding mode guidance law is provided to release the drawback. At the same time, this method can accelerate the convergence rate and weaken the chattering phenomenon to a certain extent. In addition, another novel adaptive guidance law is also derived; this ensures systems asymptotic and finite-time stability without the knowledge of perturbations bounds.Numerical simulations have demonstrated that all the three guidance laws have effective performances and outperform the traditional terminal guidance laws.展开更多
A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-d...A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.展开更多
基金financial support provided by the National Natural Science Foundation of China(Nos.61174037 and 61021002)the Aeronautical Science Foundation of China(No.20140177002)
文摘For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.
基金co-supported by the National Natural Science Foundation of China (No. 61333003)the China Aerospace Science and Technology Innovation Foundation (No. JZ20160008)
文摘To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guidance law is developed using the fast nonsingular terminal sliding mode control theory. However, the guidance law requires the upper bound of lumped uncertainty including target acceleration, which may not be accurately obtained. Therefore, by adopting a novel reaching law, an adaptive sliding mode guidance law is provided to release the drawback. At the same time, this method can accelerate the convergence rate and weaken the chattering phenomenon to a certain extent. In addition, another novel adaptive guidance law is also derived; this ensures systems asymptotic and finite-time stability without the knowledge of perturbations bounds.Numerical simulations have demonstrated that all the three guidance laws have effective performances and outperform the traditional terminal guidance laws.
基金supported by Key Programs for Science and Technology Development of Henan Province(No.102102210197)the Opening Project of Key Laboratory of Mine Informatization,Henan Polytechnic University and the Doctoral Foundation of Henan Polytechnic University(No.B2010-23)
文摘A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.