期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自组织递归模糊神经网络的PM2.5浓度预测 被引量:7
1
作者 周杉杉 李文静 乔俊飞 《智能系统学报》 CSCD 北大核心 2018年第4期509-516,共8页
针对PM2.5浓度非线性动态变化的特点,提出了一种自组织递归模糊神经网络(self-organizing recurrent fuzzy neural network,SORFNN)方法预测PM2.5小时浓度。首先,通过分析影响PM2.5浓度的多种因素,利用主成分分析法(principal component... 针对PM2.5浓度非线性动态变化的特点,提出了一种自组织递归模糊神经网络(self-organizing recurrent fuzzy neural network,SORFNN)方法预测PM2.5小时浓度。首先,通过分析影响PM2.5浓度的多种因素,利用主成分分析法(principal component analysis,PCA)筛选出与PM2.5浓度相关性较强的特征变量作为神经网络的输入变量。然后,根据ε准则和偏最小二乘算法(partial least squares,PLS)进行规则化层神经元的增删,实现递归模糊神经网络结构的自动调整,并采用学习率自适应的梯度下降算法调整模型中心、宽度和权值等参数,建立PM2.5预测模型。最后,利用典型非线性系统辨识和实际PM2.5浓度预测实验进行验证。实验结果表明,所设计的自组织递归模糊神经网络结构精简且预测精度高,较好地满足了PM2.5实时预测的要求。 展开更多
关键词 PM2.5 预测 PCA 递归模糊神经网络 自组织 自适应梯度下降
下载PDF
基于自适应UKF微型航姿系统噪声在线估计 被引量:5
2
作者 刘宇 刘琼 +2 位作者 周帆 李云梅 向高林 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第3期285-290,311,共7页
针对先验噪声与系统真实噪声不符引起标准无迹卡尔曼(unscented Kalman filter,UKF)性能退化的情况,提出一种应用于非线性时变状态和参数联合估计的自适应UKF(adaptive unscented Kalman filter,AUKF)算法。根据新的协方差矩阵与相应估... 针对先验噪声与系统真实噪声不符引起标准无迹卡尔曼(unscented Kalman filter,UKF)性能退化的情况,提出一种应用于非线性时变状态和参数联合估计的自适应UKF(adaptive unscented Kalman filter,AUKF)算法。根据新的协方差矩阵与相应估计值之间存在的误差,构建成本函数。采用梯度下降法进行在线预估,对噪声的协方差进行在线更新并反馈给标准的UKF。实验和仿真分析表明,与标准UKF相比,自适应UKF算法在精度上有较大的提高。对于时变噪声协方差不确定时,自适应UKF噪声在线估计的鲁棒性得到明显改善,验证了自适应UKF噪声在线估计模型的准确性和可行性。 展开更多
关键词 无迹卡尔曼 自适应UKF 联合估计 成本函数 梯度下降算法 鲁棒性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部