An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is base...An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.展开更多
UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, ...In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.展开更多
A novel adaptive power loading algorithm with the constraint of target overall bit error rate (BER) for orthogonal frequency division multiplexing (OFDM) systems is proposed in this article. The proposed algorithm...A novel adaptive power loading algorithm with the constraint of target overall bit error rate (BER) for orthogonal frequency division multiplexing (OFDM) systems is proposed in this article. The proposed algorithm aims to minimize the required transmit power with fixed data rate and uniform (nonadaptive) bit allocation, while guaranteeing the target overall BER. The power loading is based on the unequal-BER (UBER) strategy that allows unequal mean BERs on different subcarriers. The closed-form expressions for optimal BER and power distributions are derived in this article. Simulation results indicate the superiority of the proposed algorithm in terms of BER performance and algorithmic complexity.展开更多
基金the National Natural Science Foundation of China (60496313)
文摘An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.
文摘In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.
基金supported by the National Natural Science Foundation of China (60802033, 60873190)
文摘A novel adaptive power loading algorithm with the constraint of target overall bit error rate (BER) for orthogonal frequency division multiplexing (OFDM) systems is proposed in this article. The proposed algorithm aims to minimize the required transmit power with fixed data rate and uniform (nonadaptive) bit allocation, while guaranteeing the target overall BER. The power loading is based on the unequal-BER (UBER) strategy that allows unequal mean BERs on different subcarriers. The closed-form expressions for optimal BER and power distributions are derived in this article. Simulation results indicate the superiority of the proposed algorithm in terms of BER performance and algorithmic complexity.