Early identification of acute mesenteric ischemia (AMI) is challenging. The wide variability in clinical presentation challenges providers to make an early accurate diagnosis. Despite major diagnostic and treatment ad...Early identification of acute mesenteric ischemia (AMI) is challenging. The wide variability in clinical presentation challenges providers to make an early accurate diagnosis. Despite major diagnostic and treatment advances over the past decades, mortality remains high. Arterial embolus and superior mesenteric artery thrombosis are common causes of AMI. Non-occlusive causes are less common, but vasculitis may be important, especially in younger people. Because of the unclear clinical presentation and non-specific laboratory findings, low clinical suspicion may lead to loss of valuable time. During this diagnostic delay, progression of ischemia to transmural bowel infarction with peritonitis and septicemia may further worsen patient outcomes. Several diagnostic modalities are used to assess possible AMI. Multi-detector row computed tomographic angiography is the current gold standard. Although computed tomographic angiography leads to an accurate diagnosis in many cases, early detection is a persistent problem. Because early diagnosis is vital to commence treatment, new diagnostic strategies are needed. A non-invasive simple biochemical test would be ideal to increase clinical suspicion of AMI and would improve patient selection for radiographic evaluation. Thus, AMI could be diagnosed earlier with follow-up computed tomographic angiography or high spatial magnetic resonance imaging. Experimental in vitro and in vivo studies show promise for alpha glutathione S transferase and intestinal fatty acid binding protein as markers for AMI. Future research must confirm the clinical utility of these biochemical markers in the diagnosis of mesenteric ischemia.展开更多
Mesenteric ischemia(MI) is an uncommon medical condition with high mortality rates. ΜΙ includes inadequate blood supply, inflammatory injury and eventually necrosis of the bowel wall. The disease can be divided into...Mesenteric ischemia(MI) is an uncommon medical condition with high mortality rates. ΜΙ includes inadequate blood supply, inflammatory injury and eventually necrosis of the bowel wall. The disease can be divided into acute and chronic MI(CMI), with the first being subdivided into four categories. Therefore, acute MI(AMI) can occur as a result of arterial embolism, arterial thrombosis, mesenteric venous thrombosis and nonocclusive causes. Bowel damage is in proportion to the mesenteric blood flow decrease and may vary from minimum lesions, due to reversible ischemia, to transmural injury, with subsequent necrosis and perforation. CMI is associated to diffuse atherosclerotic disease in more than 95% of cases, with all major mesenteric arteries presenting stenosis or occlusion. Because of a lack of specific signs or due to its sometime quiet presentation, this condition is frequently diagnosed only at an advanced stage. Computed tomography(CT) imaging and CT angiography contribute to differential diagnosis and management of AMI. Angiography is also the criterion standard for CMI, with mesenteric duplex ultrasonography and magnetic resonance angiography also being of great importance. Therapeutic approach of MI includes both medical and surgical treatment. Surgical procedures include restoration of the blood flow with arteriotomy, endarterectomy or anterograde bypass, while resection of necrotic bowel is always implemented. The aim of this review was to evaluate the results of surgical treatment for MI and to present the recent literature in order to provide an update on the current concepts of surgical management of the disease. Mesh words selected include MI, diagnostic approach and therapeutic management.展开更多
急性肠系膜上动脉栓塞(acute superior mesenteric artery embolism,ASMAE)是急性肠系膜缺血的一种常见类型,约占急性肠系膜缺血的70%。急性肠系膜上动脉栓塞发病急骤,进展迅速,在病程早期,症状与体征不符,极易漏诊和误诊,导致治疗不及...急性肠系膜上动脉栓塞(acute superior mesenteric artery embolism,ASMAE)是急性肠系膜缺血的一种常见类型,约占急性肠系膜缺血的70%。急性肠系膜上动脉栓塞发病急骤,进展迅速,在病程早期,症状与体征不符,极易漏诊和误诊,导致治疗不及时,死亡率极高。目前CT血管造影已经取代传统的介入血管造影成为ASMAE首选的检查手段。ASMAE的治疗原则是早期消除阻塞原因,恢复肠管血流灌注。腔内治疗是当前ASMAE首选治疗方式,但开放手术在评估肠管活性方面也有其独特优势。对于有腹膜炎征象或怀疑肠坏死者,及时外科手术十分必要。展开更多
AIM:To investigate the effect of local intestinal perfusion with hypertonic saline(HTS) on intestinal ischemia-reperfusion injury(IRI) in bothex vivo andin vivo rat models.METHODS:All experiments were performed on mal...AIM:To investigate the effect of local intestinal perfusion with hypertonic saline(HTS) on intestinal ischemia-reperfusion injury(IRI) in bothex vivo andin vivo rat models.METHODS:All experiments were performed on male Wistar rats anesthetized with pentobarbital sodium given intraperitoneally at a dose of 60 mg/kg.Ex vivo vascularly perfused rat intestine was subjected to 60-min ischemia and either 30-min reperfusion with isotonic buffer(controls),or 5 min with HTS of 365 or 415 mOsm/L osmolarity(HTS 365mOsm or HTS 415mOsm,respectively) followed by 25-min reperfusion with isotonic buffer.The vascular intestinal perfusate flow(IPF) rate was determined by collection of the effluent from the portal vein in a calibrated tube.Spontaneous intestinal contraction rate was monitored throughout.Irreversible intestinal injury or area of necrosis(AN) was evaluated histochemically using 2.3.5-triphenyltetrazolium chloride staining.In vivo,30-min ischemia was followed by either 30-min blood perfusion or 5-min reperfusion with HTS 365mOsm through the superior mesenteric artery(SMA) followed by 25-min blood perfusion.Arterial blood pressure(BP) was measured in the common carotid artery using a miniature pressure transducer.Histological injury was evaluated in both preparations using the Chui score.RESULTS:Ex vivo,intestinal IRI resulted in a reduction in the IPF rate during reperfusion(P < 0.05 vs sham).The postischemic recovery of the IPF rate did not differ between the controls and the HTS 365mOsm group.In the HTS 415mOsm group,postischemic IPF rates were lower than in the controls and the HTS 365mOsm group(P < 0.05).The intestinal contraction rate was similar at baseline in all groups.An increase in this parameter was observed during the first 10 min of reperfusion in the control group as compared to the sham-treated group,but no such increase was seen in the HTS 365mOsm group.In controls,AN averaged 14.8% ± 5.07% of the total tissue volume.Administration of HTS 365mOsm for 5 min after 60-min ischemia resulted in decrease in展开更多
文摘Early identification of acute mesenteric ischemia (AMI) is challenging. The wide variability in clinical presentation challenges providers to make an early accurate diagnosis. Despite major diagnostic and treatment advances over the past decades, mortality remains high. Arterial embolus and superior mesenteric artery thrombosis are common causes of AMI. Non-occlusive causes are less common, but vasculitis may be important, especially in younger people. Because of the unclear clinical presentation and non-specific laboratory findings, low clinical suspicion may lead to loss of valuable time. During this diagnostic delay, progression of ischemia to transmural bowel infarction with peritonitis and septicemia may further worsen patient outcomes. Several diagnostic modalities are used to assess possible AMI. Multi-detector row computed tomographic angiography is the current gold standard. Although computed tomographic angiography leads to an accurate diagnosis in many cases, early detection is a persistent problem. Because early diagnosis is vital to commence treatment, new diagnostic strategies are needed. A non-invasive simple biochemical test would be ideal to increase clinical suspicion of AMI and would improve patient selection for radiographic evaluation. Thus, AMI could be diagnosed earlier with follow-up computed tomographic angiography or high spatial magnetic resonance imaging. Experimental in vitro and in vivo studies show promise for alpha glutathione S transferase and intestinal fatty acid binding protein as markers for AMI. Future research must confirm the clinical utility of these biochemical markers in the diagnosis of mesenteric ischemia.
文摘Mesenteric ischemia(MI) is an uncommon medical condition with high mortality rates. ΜΙ includes inadequate blood supply, inflammatory injury and eventually necrosis of the bowel wall. The disease can be divided into acute and chronic MI(CMI), with the first being subdivided into four categories. Therefore, acute MI(AMI) can occur as a result of arterial embolism, arterial thrombosis, mesenteric venous thrombosis and nonocclusive causes. Bowel damage is in proportion to the mesenteric blood flow decrease and may vary from minimum lesions, due to reversible ischemia, to transmural injury, with subsequent necrosis and perforation. CMI is associated to diffuse atherosclerotic disease in more than 95% of cases, with all major mesenteric arteries presenting stenosis or occlusion. Because of a lack of specific signs or due to its sometime quiet presentation, this condition is frequently diagnosed only at an advanced stage. Computed tomography(CT) imaging and CT angiography contribute to differential diagnosis and management of AMI. Angiography is also the criterion standard for CMI, with mesenteric duplex ultrasonography and magnetic resonance angiography also being of great importance. Therapeutic approach of MI includes both medical and surgical treatment. Surgical procedures include restoration of the blood flow with arteriotomy, endarterectomy or anterograde bypass, while resection of necrotic bowel is always implemented. The aim of this review was to evaluate the results of surgical treatment for MI and to present the recent literature in order to provide an update on the current concepts of surgical management of the disease. Mesh words selected include MI, diagnostic approach and therapeutic management.
文摘急性肠系膜上动脉栓塞(acute superior mesenteric artery embolism,ASMAE)是急性肠系膜缺血的一种常见类型,约占急性肠系膜缺血的70%。急性肠系膜上动脉栓塞发病急骤,进展迅速,在病程早期,症状与体征不符,极易漏诊和误诊,导致治疗不及时,死亡率极高。目前CT血管造影已经取代传统的介入血管造影成为ASMAE首选的检查手段。ASMAE的治疗原则是早期消除阻塞原因,恢复肠管血流灌注。腔内治疗是当前ASMAE首选治疗方式,但开放手术在评估肠管活性方面也有其独特优势。对于有腹膜炎征象或怀疑肠坏死者,及时外科手术十分必要。
基金Supported by Grant 2359.2012.7 of the President of the Russian Federation for the Support of Leading Scientific Groups
文摘AIM:To investigate the effect of local intestinal perfusion with hypertonic saline(HTS) on intestinal ischemia-reperfusion injury(IRI) in bothex vivo andin vivo rat models.METHODS:All experiments were performed on male Wistar rats anesthetized with pentobarbital sodium given intraperitoneally at a dose of 60 mg/kg.Ex vivo vascularly perfused rat intestine was subjected to 60-min ischemia and either 30-min reperfusion with isotonic buffer(controls),or 5 min with HTS of 365 or 415 mOsm/L osmolarity(HTS 365mOsm or HTS 415mOsm,respectively) followed by 25-min reperfusion with isotonic buffer.The vascular intestinal perfusate flow(IPF) rate was determined by collection of the effluent from the portal vein in a calibrated tube.Spontaneous intestinal contraction rate was monitored throughout.Irreversible intestinal injury or area of necrosis(AN) was evaluated histochemically using 2.3.5-triphenyltetrazolium chloride staining.In vivo,30-min ischemia was followed by either 30-min blood perfusion or 5-min reperfusion with HTS 365mOsm through the superior mesenteric artery(SMA) followed by 25-min blood perfusion.Arterial blood pressure(BP) was measured in the common carotid artery using a miniature pressure transducer.Histological injury was evaluated in both preparations using the Chui score.RESULTS:Ex vivo,intestinal IRI resulted in a reduction in the IPF rate during reperfusion(P < 0.05 vs sham).The postischemic recovery of the IPF rate did not differ between the controls and the HTS 365mOsm group.In the HTS 415mOsm group,postischemic IPF rates were lower than in the controls and the HTS 365mOsm group(P < 0.05).The intestinal contraction rate was similar at baseline in all groups.An increase in this parameter was observed during the first 10 min of reperfusion in the control group as compared to the sham-treated group,but no such increase was seen in the HTS 365mOsm group.In controls,AN averaged 14.8% ± 5.07% of the total tissue volume.Administration of HTS 365mOsm for 5 min after 60-min ischemia resulted in decrease in