By analyzing Chandra X-ray data of a sample of 21 galaxy groups and 19 galaxy clusters, we find that in 31 sample systems there exists a significant central (R ≤ 10 h^-171 kpc) gas entropy excess (AK0), which cor...By analyzing Chandra X-ray data of a sample of 21 galaxy groups and 19 galaxy clusters, we find that in 31 sample systems there exists a significant central (R ≤ 10 h^-171 kpc) gas entropy excess (AK0), which corresponds to = 0.1 - 0.5 keV per gas particle, beyond the power-law model that best fits the radial entropy profile of the outer regions. We also find a distinct correlation between the central entropy excess △K0 and K-band luminosity LK of the central dominating galaxies (CDGs), which is scaled as △K0 ∝ L K 1.6±04, where LK is tightly associated with the mass of the supermassive black hole hosted in the CDG. In fact, if an effective mass-to-energy conversionefficiency of 0.02 is assumed for the accretion process, the cumulative AGN feedback E AGN feedack=ηMBHc2 yields an extra heating of = 0.5 - 17.0keV per particle, which feedback is sufficient to explain the central entropy excess. In most cases, the AGN contribution can compensate the radiative loss of the X-ray gas within the cooling radius (= 0.002 - 2.2 keV per particle), and apparently exceeds the energy required to cause the scaling relations to deviate from the self-similar predictions (=0.2 - 1.0 keV per particle). In contrast to the AGN feedback, the extra heating provided by supernova explosions accounts for = 0.01 - 0.08 keV per particle in groups and is almost negligible in clusters. Therefore, the observed correlation between △K0 and Lx can be considered as direct evidence for AGN feedback in galaxy groups and clusters.展开更多
Excessive nitrate in groundwater has emerged as a serious environmental concern. The elevated nitrate concentration in drinking water causes a serious threat to public health on account of the possible transformation ...Excessive nitrate in groundwater has emerged as a serious environmental concern. The elevated nitrate concentration in drinking water causes a serious threat to public health on account of the possible transformation of nitrate to nitrite, which is one of the main predisposing factors of methemoglobinemia [1].展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.10673008,10878001 and 10973010)the Ministry of Science and Technology of China(Grant No.2009CB824900/2009CB24904)the Ministry of Education of China(the NCET Program)
文摘By analyzing Chandra X-ray data of a sample of 21 galaxy groups and 19 galaxy clusters, we find that in 31 sample systems there exists a significant central (R ≤ 10 h^-171 kpc) gas entropy excess (AK0), which corresponds to = 0.1 - 0.5 keV per gas particle, beyond the power-law model that best fits the radial entropy profile of the outer regions. We also find a distinct correlation between the central entropy excess △K0 and K-band luminosity LK of the central dominating galaxies (CDGs), which is scaled as △K0 ∝ L K 1.6±04, where LK is tightly associated with the mass of the supermassive black hole hosted in the CDG. In fact, if an effective mass-to-energy conversionefficiency of 0.02 is assumed for the accretion process, the cumulative AGN feedback E AGN feedack=ηMBHc2 yields an extra heating of = 0.5 - 17.0keV per particle, which feedback is sufficient to explain the central entropy excess. In most cases, the AGN contribution can compensate the radiative loss of the X-ray gas within the cooling radius (= 0.002 - 2.2 keV per particle), and apparently exceeds the energy required to cause the scaling relations to deviate from the self-similar predictions (=0.2 - 1.0 keV per particle). In contrast to the AGN feedback, the extra heating provided by supernova explosions accounts for = 0.01 - 0.08 keV per particle in groups and is almost negligible in clusters. Therefore, the observed correlation between △K0 and Lx can be considered as direct evidence for AGN feedback in galaxy groups and clusters.
文摘Excessive nitrate in groundwater has emerged as a serious environmental concern. The elevated nitrate concentration in drinking water causes a serious threat to public health on account of the possible transformation of nitrate to nitrite, which is one of the main predisposing factors of methemoglobinemia [1].