In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are ma...In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are mainly focused on the dynamic responses of the rotor drops onto traditional single-decker catcher bearings (SDCBs). But because of the lower limited speed of SDCB, it cannot withstand the ultra high speed rotation after rotor drop. In this paper, based on the analysis of the disadvantages of SDCBs, a new type of double-decker catcher bearings (DDCBs) is proposed to enhance the CB work performance in AMB system. In order to obtain thc accurate rotor movements before AMB failure, the dynamic characteristics of AMB are theoretically derived. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race, DDCB force model as well as heating model after rotor drop are established. Then, using those established models the dynamic responses of rotor drops onto DDCBs and SDCBs are respectively simulated. The rotor orbits, contact forces, spin speeds of various parts and heat energies after AMB failure are mainly analyzed. The simulation results show that DDCBs can effectively improve the CBs limit rotational speed and reduce the following vibrations, impacts and heating. Finally, rotor drop experiments choosing different types of CBs are carried out on the established AMB test bench. Rotor orbits, inner race temperatures as well as the rotating speeds of both inner race and intermediate races after rotor drop are synchronously measured. The experiment results verify the advantages of DDCB and the correctness of theoretical analysis. The studies provide certain theoretical and experimental references for the application of DDCBs in AMB system.展开更多
A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of deg...A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of degrees of freedom. By means of this new method, a practical example study shows that it can bedone to calculate transient response for any cross-section of a flexible rotor with enough accuracy during itsdrop in case that there exist several active magnetic bearings and traditional bearings.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50975134)
文摘In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are mainly focused on the dynamic responses of the rotor drops onto traditional single-decker catcher bearings (SDCBs). But because of the lower limited speed of SDCB, it cannot withstand the ultra high speed rotation after rotor drop. In this paper, based on the analysis of the disadvantages of SDCBs, a new type of double-decker catcher bearings (DDCBs) is proposed to enhance the CB work performance in AMB system. In order to obtain thc accurate rotor movements before AMB failure, the dynamic characteristics of AMB are theoretically derived. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race, DDCB force model as well as heating model after rotor drop are established. Then, using those established models the dynamic responses of rotor drops onto DDCBs and SDCBs are respectively simulated. The rotor orbits, contact forces, spin speeds of various parts and heat energies after AMB failure are mainly analyzed. The simulation results show that DDCBs can effectively improve the CBs limit rotational speed and reduce the following vibrations, impacts and heating. Finally, rotor drop experiments choosing different types of CBs are carried out on the established AMB test bench. Rotor orbits, inner race temperatures as well as the rotating speeds of both inner race and intermediate races after rotor drop are synchronously measured. The experiment results verify the advantages of DDCB and the correctness of theoretical analysis. The studies provide certain theoretical and experimental references for the application of DDCBs in AMB system.
文摘A new technique so-called finite modes condensation based on modal analysis is presented to simplify a long and complicated rotor system with distributed mass into a simplified rotor model with adjustablenumber of degrees of freedom. By means of this new method, a practical example study shows that it can bedone to calculate transient response for any cross-section of a flexible rotor with enough accuracy during itsdrop in case that there exist several active magnetic bearings and traditional bearings.