Adequate destruction of the aromatic structure in coal is key to further reducing the emission of pollutants.In this research,activation reactions of Shenmu coal powder were carried out in a vertical tube furnace.The ...Adequate destruction of the aromatic structure in coal is key to further reducing the emission of pollutants.In this research,activation reactions of Shenmu coal powder were carried out in a vertical tube furnace.The study investigated the evolution mechanism of carbon covalent bonds during the activation process by altering the ratio of H_(2)O to CO_(2)in the activation atmosphere.The theoretical validation was conducted through density functional calculations.The two gas molecules follow different pathways to increase the reactivity of char.CO_(2)mainly participates in the cross-linking reaction by intensifying branching,while H_(2)O and char have lower adsorption energy barriers and are more likely to generate oxygen-containing functional groups.Gas molecules partially compete for active sites in a mixed gas atmosphere,but there is a synergism between the two effects.The synergism can be attributed to two possibilities.The inclusion of H_(2)O mitigates the generation of five-membered rings to a limited extent,while concurrently enhances the development of oxygen-containing functional groups.Introducing oxygen-containing functional groups can effectively diminish the adsorption energy barrier associated with the interaction between gas molecules and char,consequently leading to a reduction in the energy demand for subsequent bond cleavage.展开更多
为研究微波辐射下CH4/CO2重整反应的动力学规律,在微波加热综合实验系统上使用生物质微波热解初生半焦进行CH4/CO2重整的实验研究。通过实验结果的比较和统计分析方法的验证,筛选出合适的重整反应动力学模型,进而利用该模型开展动力学...为研究微波辐射下CH4/CO2重整反应的动力学规律,在微波加热综合实验系统上使用生物质微波热解初生半焦进行CH4/CO2重整的实验研究。通过实验结果的比较和统计分析方法的验证,筛选出合适的重整反应动力学模型,进而利用该模型开展动力学特征值的计算与结果分析。计算得到,微波加热和常规加热方式下重整反应的活化能分别为29.40 k J/mol和54.97 k J/mol。相比于传统方式下的重整反应,微波辐照半焦诱导重整反应的活化能降幅达到46.5%。分析认为,微波辐射下"热点效应"是降低重整反应活化能的主要原因。展开更多
Five coal char samples were burnt in thermobalance with ramp heating rate of 30 K/min. The pore structure of these char samples was studied through mercury intrusion method. Combined with the kinetic theory of gases, ...Five coal char samples were burnt in thermobalance with ramp heating rate of 30 K/min. The pore structure of these char samples was studied through mercury intrusion method. Combined with the kinetic theory of gases, the data of surface area was used in fitting the results. As a result, the kinetic triplet was given. The analysis showed that five char samples share almost the same intrinsic activation energy of the overall reaction. The phenomenological implication of the derived combustion rate equation was given.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-028)。
文摘Adequate destruction of the aromatic structure in coal is key to further reducing the emission of pollutants.In this research,activation reactions of Shenmu coal powder were carried out in a vertical tube furnace.The study investigated the evolution mechanism of carbon covalent bonds during the activation process by altering the ratio of H_(2)O to CO_(2)in the activation atmosphere.The theoretical validation was conducted through density functional calculations.The two gas molecules follow different pathways to increase the reactivity of char.CO_(2)mainly participates in the cross-linking reaction by intensifying branching,while H_(2)O and char have lower adsorption energy barriers and are more likely to generate oxygen-containing functional groups.Gas molecules partially compete for active sites in a mixed gas atmosphere,but there is a synergism between the two effects.The synergism can be attributed to two possibilities.The inclusion of H_(2)O mitigates the generation of five-membered rings to a limited extent,while concurrently enhances the development of oxygen-containing functional groups.Introducing oxygen-containing functional groups can effectively diminish the adsorption energy barrier associated with the interaction between gas molecules and char,consequently leading to a reduction in the energy demand for subsequent bond cleavage.
文摘为研究微波辐射下CH4/CO2重整反应的动力学规律,在微波加热综合实验系统上使用生物质微波热解初生半焦进行CH4/CO2重整的实验研究。通过实验结果的比较和统计分析方法的验证,筛选出合适的重整反应动力学模型,进而利用该模型开展动力学特征值的计算与结果分析。计算得到,微波加热和常规加热方式下重整反应的活化能分别为29.40 k J/mol和54.97 k J/mol。相比于传统方式下的重整反应,微波辐照半焦诱导重整反应的活化能降幅达到46.5%。分析认为,微波辐射下"热点效应"是降低重整反应活化能的主要原因。
基金The work was subsidized by the Special Funds for Major State Basic Research Projects(973).project number G1999022205.
文摘Five coal char samples were burnt in thermobalance with ramp heating rate of 30 K/min. The pore structure of these char samples was studied through mercury intrusion method. Combined with the kinetic theory of gases, the data of surface area was used in fitting the results. As a result, the kinetic triplet was given. The analysis showed that five char samples share almost the same intrinsic activation energy of the overall reaction. The phenomenological implication of the derived combustion rate equation was given.