期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VQ-VAE与Do-Conv层的无监督语音表示学习
1
作者 刘雪鹏 张文林 陈紫龙 《信息工程大学学报》 2022年第5期513-519,共7页
针对在无监督条件下,对语音信号提取语音表示的问题,提出了Do-VQVAE模型。提出的Do-VQVAE模型主要基于矢量量化变分自编码器的结构进行实现,并在此基础上,引入深度方向超参数化卷积层构成编码器。该模型通过编码器-解码器的结构,以无监... 针对在无监督条件下,对语音信号提取语音表示的问题,提出了Do-VQVAE模型。提出的Do-VQVAE模型主要基于矢量量化变分自编码器的结构进行实现,并在此基础上,引入深度方向超参数化卷积层构成编码器。该模型通过编码器-解码器的结构,以无监督的方式提取语音信号的特征,将编码器的输出通过码书的映射进行量化,得到离散的语音表示。在实验过程中还引入了互信息神经估计,旨在提高学习到的语音表示的说话人不变性。提出的模型在ZeroSpeech 2019挑战的数据集上进行了训练和测试,经过测试,模型的ABX错误率相比于基线和卷积VQ-VAE模型都有明显降低,并取得了与最好系统相媲美的结果。 展开更多
关键词 语音表示 无监督 声学单元发现 ZeroSpeech挑战
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部