Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled ...Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.展开更多
基金financially supported by the National Natural Science Foundation of China(32225029,22205240,52073287,22075289,82071552 and 22376006)the National Key R&D Program of China(2023YFC2605003)。
基金This work is supported by the National Natural Science Foundation of China (Nos. 21573051, 21708004, and 51761145044), Sience Fund of Creative Research Groups of the National Natural Science Foundation of China (No. 21721002), the National Basic Research Program of China (No. 2016YFA0201601), Beijing Municipal Science & Technology Commission (No. Z161100000116036), Key Research Program of Frontier Sciences, CAS, Grant QYZDB-SSW-SLH029, CAS Interdisciplinary Innovation Team, and K. C. Wong Education Foundation.
文摘Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.