In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond...In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...展开更多
The adsorption of two phenols, namely, phenol and salicylic acid(SA) onto a water-compatible hypercrosslinked polymeric resin(NJ-8) were studied in terms of pseudo-second-order and first order mechanisms for chemical ...The adsorption of two phenols, namely, phenol and salicylic acid(SA) onto a water-compatible hypercrosslinked polymeric resin(NJ-8) were studied in terms of pseudo-second-order and first order mechanisms for chemical sorption as well as an intraparticle diffusion mechanism process. Kinetic analysis showed that the intraparticle diffusion process was the essential rate-controlling step. The activation energies of sorption have also been evaluated with the pseudo-second-order and intraparticle diffusion constants, respectively. Adsorption equilibrium data were well fitted by the Langmuir, Freundlich and Redlich-Peterson isotherms. Adsorption was exothermic and basically of a type of transition between physical and chemical character. The sorption capacity was higher for SA due to its more hydrophobic. Phenol has a higher adsorption enthalpy since it could form stronger hydrogen bonding on NJ-8.展开更多
Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond prot...Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.展开更多
Salicylic acid(SA)is an important plant hormone that regulates defense responses and leaf senescence.It is imperative to understand upstream factors that regulate genes of SA biosynthesis.SAG202/SARD1 is a key regulat...Salicylic acid(SA)is an important plant hormone that regulates defense responses and leaf senescence.It is imperative to understand upstream factors that regulate genes of SA biosynthesis.SAG202/SARD1 is a key regulator for isochorismate synthase 1(ICS1)induction and SA biosynthesis in defense responses.The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood.Here we show that AtNAP,a senescence-specific NAC family transcription factor,directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays.Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves.Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype.Furthermore,SA positively feedback regulates AtNAP and SAG202.Our research has uncovered a unique positive feedback regulatory loop,SA-AtNAP-SAG202-ICS1-SA,that operates to control SA biosynthesis associated with leaf senescence but not defense response.展开更多
Barhi dates at Khalal maturity stage are well-known with their pleasant taste,crispy texture,and bright yellow color.It is necessary to extend the duration of Barhi Khalal stage which is too short for effective market...Barhi dates at Khalal maturity stage are well-known with their pleasant taste,crispy texture,and bright yellow color.It is necessary to extend the duration of Barhi Khalal stage which is too short for effective marketing.This study aimed to inspect the effects of Gibberellic Acid(GA_(3))and Salicylic Acid(SA)postharvest treatments on retaining the high quality of Khalal Barhi fruits during controlled atmosphere storage.Fresh samples of Barhi fruits at Khalal stage harvested at three different ripening levels were dipped after harvesting in GA3(150 ppm)or SA(2.0 mmol/L)and subsequently stored in controlled atmosphere(0°С,5%O_(2),5%CO_(2),80%±5%RH).The results revealed that the GA_(3) and SA treatments reduced the percentage of weight loss and decay in the fruits,while the total soluble solids increased.Moreover,GA_(3) and SA treatments were significantly efficient in limiting the changes in fruit color and texture of Barhi dates compared to the control.Sensorial results support the experimental data and disclosed that the GA_(3)(150 ppm)treatment in the controlled atmosphere(CA)storage was better in conserving the quality of Barhi at the Khalal maturity stage and delaying ripening process.展开更多
[Objectives]This study was conducted to investigate the relationship between HSPs and the response of high temperature stress.[Methods]Molecular biological techniques were applied to clone and analyze the gene sequenc...[Objectives]This study was conducted to investigate the relationship between HSPs and the response of high temperature stress.[Methods]Molecular biological techniques were applied to clone and analyze the gene sequence of DpHsp70 gene.The changes in the expression of DpHsp70 gene under high temperature stress and exogenous salicylic acid(SA)were observed and further analyzed by qRT PCR.[Results]The coding region of the Dahlia DpHsp70 gene was 705 bp,encoding 234 amino acid residues(GenBank accession number:MH102288).Aligned with Compositae plants,the Dahlia DpHsp70 gene shared more than 83%homology in gene sequence while 99%-100%homology in amino acid sequence.Under the 35℃high temperature stress,the expression of DpHsp70 gene in Dahlia petals significantly increased.Meanwhile,the expression of DpHsp70 gene further increased under SA at 35℃temperature,which was significantly higher than those of the control group and the 35℃high temperature stress treatment group.It was demonstrated that the Hsp70 gene in Compositae is with highly conservative property and its expression could be up-regulated in response to high temperature stress.It can also be concluded that applying exogenous SA can improve the high temperature resistance of Dahlia.[Conclusions]This study provides a new experimental basis for elucidating the physiological function and mechanism of Dahlia in response to high temperature stress.展开更多
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decade...The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.展开更多
Protein folding in the endoplasmic reticulum (ER) is a fundamental process in plant cells that is vulnerable to many environmental stresses. When unfolded or misfolded proteins accumulate in the ER, the well-conserv...Protein folding in the endoplasmic reticulum (ER) is a fundamental process in plant cells that is vulnerable to many environmental stresses. When unfolded or misfolded proteins accumulate in the ER, the well-conserved unfolded protein response (UPR) is initiated to mitigate the ER stress by enhancing the protein folding capability and/or accelerating the ER-associated protein degradation. Here, we report the conservation of the activation mechanism of OsbZIP74 (also known as OsbZIP50), an important ER stress regulator in monocot plant rice (Oryza sativa L.). Under normal conditions, OsbZIP74 mRNA encodes a basic leucine-zipper transcription factor with a putative transmembrane domain. When treating with ER stress-inducing agents such as tunicamycin and DTT, the conserved double stem-loop structures of OsbZIP74 mRNA are spliced out. Thereafter, the resulting new OsbZIP74 mRNA produces the nucleus-localized form of OsbZIP74 protein, eliminating the hydrophobic region. The activated form of OsbZIP74 has transcriptional activation activity in both yeast cells and Arabidopsis leaf protoplasts. The induction of OsbZIP74 splicing is much suppressed in the OsIRE1 knock- down rice plants, indicating the involvement of OslRE1 in OsbZIP74 splicing. We also demonstrate that the unconventional splicing of OsbZIP74 mRNA is associated with heat stress and salicylic acid, which is an important plant hormone in systemic acquired resistance against pathogen or parasite.展开更多
文摘In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...
文摘The adsorption of two phenols, namely, phenol and salicylic acid(SA) onto a water-compatible hypercrosslinked polymeric resin(NJ-8) were studied in terms of pseudo-second-order and first order mechanisms for chemical sorption as well as an intraparticle diffusion mechanism process. Kinetic analysis showed that the intraparticle diffusion process was the essential rate-controlling step. The activation energies of sorption have also been evaluated with the pseudo-second-order and intraparticle diffusion constants, respectively. Adsorption equilibrium data were well fitted by the Langmuir, Freundlich and Redlich-Peterson isotherms. Adsorption was exothermic and basically of a type of transition between physical and chemical character. The sorption capacity was higher for SA due to its more hydrophobic. Phenol has a higher adsorption enthalpy since it could form stronger hydrogen bonding on NJ-8.
基金supported by the National Key Research and Development Program of China (2016YFD0401401)The Technological innovation project of Hubei Province (2017ABA142)+2 种基金The Science and Technology Plan Project of Tibet Autonomous Region (XZ201901NA04)The Science and Technology Plan Project of Hunan Science (2017NK2212)The Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI)
文摘Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.
基金This research was supported by National Science Foundation(NSF)Grant MCB-0445596,Department of Energy(DOE)Grant DE-FG02-02ER15341 and Cornell University(to S.G.).Both B.L.and Y.H.were funded by scholarships from China Scholars Council.
文摘Salicylic acid(SA)is an important plant hormone that regulates defense responses and leaf senescence.It is imperative to understand upstream factors that regulate genes of SA biosynthesis.SAG202/SARD1 is a key regulator for isochorismate synthase 1(ICS1)induction and SA biosynthesis in defense responses.The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood.Here we show that AtNAP,a senescence-specific NAC family transcription factor,directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays.Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves.Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype.Furthermore,SA positively feedback regulates AtNAP and SAG202.Our research has uncovered a unique positive feedback regulatory loop,SA-AtNAP-SAG202-ICS1-SA,that operates to control SA biosynthesis associated with leaf senescence but not defense response.
文摘Barhi dates at Khalal maturity stage are well-known with their pleasant taste,crispy texture,and bright yellow color.It is necessary to extend the duration of Barhi Khalal stage which is too short for effective marketing.This study aimed to inspect the effects of Gibberellic Acid(GA_(3))and Salicylic Acid(SA)postharvest treatments on retaining the high quality of Khalal Barhi fruits during controlled atmosphere storage.Fresh samples of Barhi fruits at Khalal stage harvested at three different ripening levels were dipped after harvesting in GA3(150 ppm)or SA(2.0 mmol/L)and subsequently stored in controlled atmosphere(0°С,5%O_(2),5%CO_(2),80%±5%RH).The results revealed that the GA_(3) and SA treatments reduced the percentage of weight loss and decay in the fruits,while the total soluble solids increased.Moreover,GA_(3) and SA treatments were significantly efficient in limiting the changes in fruit color and texture of Barhi dates compared to the control.Sensorial results support the experimental data and disclosed that the GA_(3)(150 ppm)treatment in the controlled atmosphere(CA)storage was better in conserving the quality of Barhi at the Khalal maturity stage and delaying ripening process.
基金Supported by Applied Basic Research Program of Suzhou City,Jiangsu Province(SYN201405).
文摘[Objectives]This study was conducted to investigate the relationship between HSPs and the response of high temperature stress.[Methods]Molecular biological techniques were applied to clone and analyze the gene sequence of DpHsp70 gene.The changes in the expression of DpHsp70 gene under high temperature stress and exogenous salicylic acid(SA)were observed and further analyzed by qRT PCR.[Results]The coding region of the Dahlia DpHsp70 gene was 705 bp,encoding 234 amino acid residues(GenBank accession number:MH102288).Aligned with Compositae plants,the Dahlia DpHsp70 gene shared more than 83%homology in gene sequence while 99%-100%homology in amino acid sequence.Under the 35℃high temperature stress,the expression of DpHsp70 gene in Dahlia petals significantly increased.Meanwhile,the expression of DpHsp70 gene further increased under SA at 35℃temperature,which was significantly higher than those of the control group and the 35℃high temperature stress treatment group.It was demonstrated that the Hsp70 gene in Compositae is with highly conservative property and its expression could be up-regulated in response to high temperature stress.It can also be concluded that applying exogenous SA can improve the high temperature resistance of Dahlia.[Conclusions]This study provides a new experimental basis for elucidating the physiological function and mechanism of Dahlia in response to high temperature stress.
基金supported by a grant from the National Science Foundation (IOS-0842716) to Dr.Z Mou
文摘The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
基金This project is funded by the National Natural Science Foundation of China (31070233, 31171157), Shanghai Pujiang Talent Program (11PJ1400700), and partly supported by the National Basic Research Program of China (973 Program, 2012CB910500), all granted to J.X.L. ACKNOWLEDGMENTS We would also like thank Drs Yuhya Wakasa and Fumio Takaiwa for providing the OslREI transgenic rice seeds. No conflict of interest declared.
文摘Protein folding in the endoplasmic reticulum (ER) is a fundamental process in plant cells that is vulnerable to many environmental stresses. When unfolded or misfolded proteins accumulate in the ER, the well-conserved unfolded protein response (UPR) is initiated to mitigate the ER stress by enhancing the protein folding capability and/or accelerating the ER-associated protein degradation. Here, we report the conservation of the activation mechanism of OsbZIP74 (also known as OsbZIP50), an important ER stress regulator in monocot plant rice (Oryza sativa L.). Under normal conditions, OsbZIP74 mRNA encodes a basic leucine-zipper transcription factor with a putative transmembrane domain. When treating with ER stress-inducing agents such as tunicamycin and DTT, the conserved double stem-loop structures of OsbZIP74 mRNA are spliced out. Thereafter, the resulting new OsbZIP74 mRNA produces the nucleus-localized form of OsbZIP74 protein, eliminating the hydrophobic region. The activated form of OsbZIP74 has transcriptional activation activity in both yeast cells and Arabidopsis leaf protoplasts. The induction of OsbZIP74 splicing is much suppressed in the OsIRE1 knock- down rice plants, indicating the involvement of OslRE1 in OsbZIP74 splicing. We also demonstrate that the unconventional splicing of OsbZIP74 mRNA is associated with heat stress and salicylic acid, which is an important plant hormone in systemic acquired resistance against pathogen or parasite.