L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphen...L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.展开更多
基金National High-Tech Research and Development Program of China ( 863 Program ) ( No. 2007AA03Z336) Program for New Century Excellent Talents in University,China ( No. NCET-07-0174) +1 种基金National Natural Science Foundations of China ( No. 21074021,No.50673018) The Fundamental Research Funds for the Central Universities ( No. 2011D10543)
文摘L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.