Sorption of acetanilide herbicides, metolachlor, acetochlor, pretilachlor and butachlor on eight soils with various physical and chemical properties was studied. The adsorption isotherms could fit Freundich equation w...Sorption of acetanilide herbicides, metolachlor, acetochlor, pretilachlor and butachlor on eight soils with various physical and chemical properties was studied. The adsorption isotherms could fit Freundich equation well (r 2 ≥0.91) and the adsorption extents increased in the order: metolachlor < acetochlor < pratilachlor < butachlor. The product of Freundlich adsorption constants, Kf (1/n), showed to have a good correlation with organic matter content (OM) of soils for each of these herbicides, suggesting that OM is the primary factor dominating in the adsorption process of these asetanilide herbicides. Multivariant correlation regression between Kf (1/n) and two factors, water solubility (S.) of herbicides and OM, was also performed. Kf(1/n) correlated with 1/S. and OM/S. well, showing that high S. corresponds to a weak tendency to adsorb on soils. Infrared (IR) spectra and electron spin resonance (ESR) parameters confirmed that multifunctional H-bonds and charge-transfer bonds were the main adsorption mechanisms of these acetanilide herbicides. The abilities of herbicides to form these adsorption bonds with HA increased in the same order as the extent of adsorption.展开更多
Two molecularly imprinted polymers binding to analgesic acetanilide were prepared using either dual functional monomers of calix[4]arene derivative and acrylamide or single monomer acrylamide, respectively. The polyme...Two molecularly imprinted polymers binding to analgesic acetanilide were prepared using either dual functional monomers of calix[4]arene derivative and acrylamide or single monomer acrylamide, respectively. The polymers were ground, sieved and investigated by equilibrium binding experiment to evaluate their recognition properties for the template and other substrates. Scatchard analysis showed that homogeneous recognition sites were formed in the imprinted polymer matrix. Our results demonstrated that the polymer using two functional monomers exhibited better selectivity for the template. This study may open new frontiers for the development and application of imprinted polymers, such as drug separation and purification.展开更多
基金the National Natural Science Foundation of China (Nos: 29477274 and 3967O420)
文摘Sorption of acetanilide herbicides, metolachlor, acetochlor, pretilachlor and butachlor on eight soils with various physical and chemical properties was studied. The adsorption isotherms could fit Freundich equation well (r 2 ≥0.91) and the adsorption extents increased in the order: metolachlor < acetochlor < pratilachlor < butachlor. The product of Freundlich adsorption constants, Kf (1/n), showed to have a good correlation with organic matter content (OM) of soils for each of these herbicides, suggesting that OM is the primary factor dominating in the adsorption process of these asetanilide herbicides. Multivariant correlation regression between Kf (1/n) and two factors, water solubility (S.) of herbicides and OM, was also performed. Kf(1/n) correlated with 1/S. and OM/S. well, showing that high S. corresponds to a weak tendency to adsorb on soils. Infrared (IR) spectra and electron spin resonance (ESR) parameters confirmed that multifunctional H-bonds and charge-transfer bonds were the main adsorption mechanisms of these acetanilide herbicides. The abilities of herbicides to form these adsorption bonds with HA increased in the same order as the extent of adsorption.
基金Project supported by the National Natural Science Foundation of China (Nos. 20175009 and 20375017) the Doctoral Foundation of Education Ministry of China (No. 2002055002) and Tianjin Natural Science Foundation (No. 033603511).
文摘Two molecularly imprinted polymers binding to analgesic acetanilide were prepared using either dual functional monomers of calix[4]arene derivative and acrylamide or single monomer acrylamide, respectively. The polymers were ground, sieved and investigated by equilibrium binding experiment to evaluate their recognition properties for the template and other substrates. Scatchard analysis showed that homogeneous recognition sites were formed in the imprinted polymer matrix. Our results demonstrated that the polymer using two functional monomers exhibited better selectivity for the template. This study may open new frontiers for the development and application of imprinted polymers, such as drug separation and purification.