将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台...将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台的结构特征与被动控制理论,构造位置系统与加载系统的联合控制模型,然后利用MATLAB软件仿真位置系统影响下的输出加载力,得到控制精度的影响因素。最后将模糊PID控制策略添加到原有的试验台加载系统控制模块中,使其能够动态调节控制器的参数,有效提升了输出加载力的响应速度,缩短了响应时间。展开更多
Lateral transportation of soil heavy metals in rainfall events could significantly increase the scope of pollution. Therefore, it is necessary to develop a model with high accuracy to simulate the migration quantity o...Lateral transportation of soil heavy metals in rainfall events could significantly increase the scope of pollution. Therefore, it is necessary to develop a model with high accuracy to simulate the migration quantity of heavy metals. A model for heavy metal migration simulation was developed based on the SWAT(Soil and Water Assessment Tool) model. This model took into consideration the influence of soil p H value, soil particle size, runoff volume, sediment amount,concentration of water-soluble heavy metals dissolved in runoff and insoluble absorbed to the soil particles. This model was reasonable in Huanjiang watershed, Guangxi Zhuang Autonomous Region, south China, covering an area of 273 km^2. The optimal drainage area threshold was determined by analyzing the effects of watershed subdivision on the simulation results to ensure the simulation accuracy. The main conclusions of this paper were:(1) watershed subdivision could affect simulation migration quantity of heavy metals;(2) the quantity of heavy metals transported by sediment accounted for 97%–99% of the total migration quantity in the study watershed. Therefore, sediment played the most important role in heavy metal migration;(3) the optimal drainage area threshold percentage to ensure high simulation accuracy was determined to be 2.01% of the total watershed;(4) with the optimal threshold percentage, this model could simulate the migration quantity of As, Pb and Cd accurately at the total watershed and subwatershed level. The results of this paper were useful for identifying the key regions with heavy metal migration.展开更多
文摘将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台的结构特征与被动控制理论,构造位置系统与加载系统的联合控制模型,然后利用MATLAB软件仿真位置系统影响下的输出加载力,得到控制精度的影响因素。最后将模糊PID控制策略添加到原有的试验台加载系统控制模块中,使其能够动态调节控制器的参数,有效提升了输出加载力的响应速度,缩短了响应时间。
基金supported by the Hi-Tech Research and Development Program(863)of China(No.2014AA06A513)the Beijing Postdoctoral Research Foundation+2 种基金the Project of Heavy Metal Risk Warning and Phytoremediation in Mining Concentrated Area(No.GJHZ201308)the Special Fund for Environment Protection Research in the Public Interest(No.201409044)the Study on Heavy Metal Accumulation Risk and Early Warning in Typical Ore Concentration Area(No.201111020-4)
文摘Lateral transportation of soil heavy metals in rainfall events could significantly increase the scope of pollution. Therefore, it is necessary to develop a model with high accuracy to simulate the migration quantity of heavy metals. A model for heavy metal migration simulation was developed based on the SWAT(Soil and Water Assessment Tool) model. This model took into consideration the influence of soil p H value, soil particle size, runoff volume, sediment amount,concentration of water-soluble heavy metals dissolved in runoff and insoluble absorbed to the soil particles. This model was reasonable in Huanjiang watershed, Guangxi Zhuang Autonomous Region, south China, covering an area of 273 km^2. The optimal drainage area threshold was determined by analyzing the effects of watershed subdivision on the simulation results to ensure the simulation accuracy. The main conclusions of this paper were:(1) watershed subdivision could affect simulation migration quantity of heavy metals;(2) the quantity of heavy metals transported by sediment accounted for 97%–99% of the total migration quantity in the study watershed. Therefore, sediment played the most important role in heavy metal migration;(3) the optimal drainage area threshold percentage to ensure high simulation accuracy was determined to be 2.01% of the total watershed;(4) with the optimal threshold percentage, this model could simulate the migration quantity of As, Pb and Cd accurately at the total watershed and subwatershed level. The results of this paper were useful for identifying the key regions with heavy metal migration.