The analyzing data on stratigraphic temperature measurement , thermal conductivity of the strata and radioactive heat production rate show that the present average geothermal gradient in the Ordos Basin is 2.93℃/100 ...The analyzing data on stratigraphic temperature measurement , thermal conductivity of the strata and radioactive heat production rate show that the present average geothermal gradient in the Ordos Basin is 2.93℃/100 m, and the average heat flow value is 61.78 mW/m2, which belongs to the mesothermal basin, and the value of the present geothermal gradient and heat flow in the east is higher than that in the west. The sandstone radioactive heat production rate of Zhiluo Group in Dongsheng Uranium deposits of Yimeng uplift is obviously higher in the mudstone, indicating that there exists a uranium anomaly. Based on studies of the present thermal field of the basin, the late-Mesozoic paleotemperature and paleogeothermal gradient are determined by using different kinds of paleotemperature methods. According to the anomaly of the late-Mesozoic paleotemperature gradient and magmatic event age, there was a tectonic thermal event in the early Cretaceous epoch of late-Mesozoic. This article rebuilds tectonic thermal history of different tectonic units by thermal history simulation using basin simulating software. The evolution of oil-gas and coal, and accumulation (mineralization) of mineral uranium are all controlled by the tectonic thermal history in the Ordos basin, especially by the tectonic thermal event that happened in the late Mesozoic. For both the gas source rocks of upper Paleozoic group and lower paleozoic group, the gas was largely generated in the early Cretaceous epoch of the late Mesozoic. The main petroleum generation period for Yanchang Group in Triassic system is the early Cretaceous epoch too, and the highest thermal maturity of the coal of Permo-Carboniferous, Triassic, and Jurassic reaches is the early Cretaceous epoch also. Early Cretaceous epoch is still one of the most important mineralizing periods of uranium.展开更多
There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early C...There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.展开更多
文摘The analyzing data on stratigraphic temperature measurement , thermal conductivity of the strata and radioactive heat production rate show that the present average geothermal gradient in the Ordos Basin is 2.93℃/100 m, and the average heat flow value is 61.78 mW/m2, which belongs to the mesothermal basin, and the value of the present geothermal gradient and heat flow in the east is higher than that in the west. The sandstone radioactive heat production rate of Zhiluo Group in Dongsheng Uranium deposits of Yimeng uplift is obviously higher in the mudstone, indicating that there exists a uranium anomaly. Based on studies of the present thermal field of the basin, the late-Mesozoic paleotemperature and paleogeothermal gradient are determined by using different kinds of paleotemperature methods. According to the anomaly of the late-Mesozoic paleotemperature gradient and magmatic event age, there was a tectonic thermal event in the early Cretaceous epoch of late-Mesozoic. This article rebuilds tectonic thermal history of different tectonic units by thermal history simulation using basin simulating software. The evolution of oil-gas and coal, and accumulation (mineralization) of mineral uranium are all controlled by the tectonic thermal history in the Ordos basin, especially by the tectonic thermal event that happened in the late Mesozoic. For both the gas source rocks of upper Paleozoic group and lower paleozoic group, the gas was largely generated in the early Cretaceous epoch of the late Mesozoic. The main petroleum generation period for Yanchang Group in Triassic system is the early Cretaceous epoch too, and the highest thermal maturity of the coal of Permo-Carboniferous, Triassic, and Jurassic reaches is the early Cretaceous epoch also. Early Cretaceous epoch is still one of the most important mineralizing periods of uranium.
基金This research was supported by the Project for the Survey of Land and Resources in China(1212010633901)National Natural Science Foundation of China(Grant No.41572090)。
文摘There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.