气象因素是短期负荷预测重要的影响因素。为提高预测精度,研究了一种基于气温累积效应和灰色关联度的支持向量机拓展算法——最小二乘支持向量机(least squares support vector machine,LSSVM)。通过相关性分析得到与日平均负荷相关程...气象因素是短期负荷预测重要的影响因素。为提高预测精度,研究了一种基于气温累积效应和灰色关联度的支持向量机拓展算法——最小二乘支持向量机(least squares support vector machine,LSSVM)。通过相关性分析得到与日平均负荷相关程度较大的气象因素。在此基础上,结合气温累积效应采用灰色关联方法对历史日进行分析,选取与待预测日关联度较大的历史日作为相似日,并对LSSVM模型进行训练和预测。实际应用表明,使用所提出的预测模型和数据处理方法能够得到更加精确的预测结果。展开更多
文摘气象因素是短期负荷预测重要的影响因素。为提高预测精度,研究了一种基于气温累积效应和灰色关联度的支持向量机拓展算法——最小二乘支持向量机(least squares support vector machine,LSSVM)。通过相关性分析得到与日平均负荷相关程度较大的气象因素。在此基础上,结合气温累积效应采用灰色关联方法对历史日进行分析,选取与待预测日关联度较大的历史日作为相似日,并对LSSVM模型进行训练和预测。实际应用表明,使用所提出的预测模型和数据处理方法能够得到更加精确的预测结果。