A series of acceptor-donor-acceptor alternative small molecules were synthesized containing electron-donating central building moieties of phenothiazine, 2,7-carbazole and thieno[3,4-b]thiophene and electron-accepting...A series of acceptor-donor-acceptor alternative small molecules were synthesized containing electron-donating central building moieties of phenothiazine, 2,7-carbazole and thieno[3,4-b]thiophene and electron-accepting moie- ties of tetrazine on both sides. The various conformations of the central blocks, with the coplanarity in an order of phenothiazine〈2,7-carbazole〈thieno[3,4-b]thiophene, have an obvious influence on the optical, electrochemical property and the crystallinity of small molecule. In addition, the blend films between small molecule and (6,6)-phenyl-C6rbutyric acid methyl ester offered significantly various morphologies, changing from uniform sur- face to interpenetrated networks. As a result, the bulk heterojunction photovoltaic devices based on the three small molecules provided varied performance, and the highest coplanar molecule based device exhibited the best photo- voltaic performance.展开更多
Despite much progress in organic solar cells(OSCs),higher efficiency is still the most desirable goal and can indeed be obtained through rational design of active layer materials and device optimization according to t...Despite much progress in organic solar cells(OSCs),higher efficiency is still the most desirable goal and can indeed be obtained through rational design of active layer materials and device optimization according to the theoretical prediction.Herein,under the guidance of a semi-empirical model,two new non-fullerene small molecule acceptors(NFSMAs)with an acceptor-donor-acceptor(A-D-A)architecture,namely,6 T-OFIC and 5 T-OFIC,have been designed and synthesized.6 T-OFIC exhibits wider absorption spectrum and a red-shifted absorption onset(λ_(onset))of 946 nm due to its extended conjugation central unit.In contrast,5 T-OFIC with five-thiophene-fused backbone has an absorption with theλ_(onset)of 927 nm,which is closer to the predicted absorption range for the best single junction cells based on the semiempirical model.Consequently,the device based on 5 T-OFIC yields a higher power conversion efficiency(PCE)of 13.43%compared with 12.35%of the 6 T-OFIC-based device.Furthermore,an impressive PCE of 15.45%was achieved for the5 T-OFIC-based device when using F-2 Cl as the third component.5 T-OFIC offers one of a few acceptor cases with efficiencies over 15%other than Y6 derivatives.展开更多
Background:Organic semiconductors have attracted much attention due to their excellent biocompatibility,tunable electronic structure,low cost,and antimicrobial phototherapy.However,owing to the high exciton binding en...Background:Organic semiconductors have attracted much attention due to their excellent biocompatibility,tunable electronic structure,low cost,and antimicrobial phototherapy.However,owing to the high exciton binding energies,organic semiconductor is constrained by their short exciton diffusion length,leading to inefficient transportation of photogenerated carriers and deficient antibacterial capability.Methods:To address this issue,a quad-channel synergistic antibacterial nano-platform of copper sulfide/organic semiconductor(CuS/IEICO-4F)heterojunctions with enhanced photocatalytic performance is designed and manufactured,which can produce localized heat and raise the levels of extracellular reactive oxygen species under near-infrared laser irradiation.Simultaneously,the released Cu2+can consume intrabacterial glutathione,destroying the defense system and ultimately leading to bacterial inactivation.Results:In vitro antibacterial experiments demonstrate that the organic-inorganic bio-heterojunctions possess the potent antibacterial capacity and effective bacterial eradication.Conclusion:This countermeasure shows great promise for application in infectious wound regeneration.展开更多
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhod...Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.展开更多
基金We acknowledge the financial supports from the National Natural Science Foundation of China,Jiangsu Provincial Natural Science Foundation of China,Research Fund for the Doctoral Program of Higher Education of China,Open Project of State Key Laboratory of Supramolecular Structure and Materials,Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A series of acceptor-donor-acceptor alternative small molecules were synthesized containing electron-donating central building moieties of phenothiazine, 2,7-carbazole and thieno[3,4-b]thiophene and electron-accepting moie- ties of tetrazine on both sides. The various conformations of the central blocks, with the coplanarity in an order of phenothiazine〈2,7-carbazole〈thieno[3,4-b]thiophene, have an obvious influence on the optical, electrochemical property and the crystallinity of small molecule. In addition, the blend films between small molecule and (6,6)-phenyl-C6rbutyric acid methyl ester offered significantly various morphologies, changing from uniform sur- face to interpenetrated networks. As a result, the bulk heterojunction photovoltaic devices based on the three small molecules provided varied performance, and the highest coplanar molecule based device exhibited the best photo- voltaic performance.
基金supported by the Ministry of Science and Technology, China (2019YFA0705900 and 2016YFA0200200)the National Natural Science Foundation of China (21935007, 52025033 and 51773095)+1 种基金Natural Science Foundation of Tianjin (20JCZDJC00740 and 17JCJQJC44500)the 111 Project (B12015)
文摘Despite much progress in organic solar cells(OSCs),higher efficiency is still the most desirable goal and can indeed be obtained through rational design of active layer materials and device optimization according to the theoretical prediction.Herein,under the guidance of a semi-empirical model,two new non-fullerene small molecule acceptors(NFSMAs)with an acceptor-donor-acceptor(A-D-A)architecture,namely,6 T-OFIC and 5 T-OFIC,have been designed and synthesized.6 T-OFIC exhibits wider absorption spectrum and a red-shifted absorption onset(λ_(onset))of 946 nm due to its extended conjugation central unit.In contrast,5 T-OFIC with five-thiophene-fused backbone has an absorption with theλ_(onset)of 927 nm,which is closer to the predicted absorption range for the best single junction cells based on the semiempirical model.Consequently,the device based on 5 T-OFIC yields a higher power conversion efficiency(PCE)of 13.43%compared with 12.35%of the 6 T-OFIC-based device.Furthermore,an impressive PCE of 15.45%was achieved for the5 T-OFIC-based device when using F-2 Cl as the third component.5 T-OFIC offers one of a few acceptor cases with efficiencies over 15%other than Y6 derivatives.
基金jointly funded by the National Natural Science Foundation of China(32271392,52302351)China Postdoctoral Science Foundation(2023M732477)+1 种基金Sichuan University Postdoctoral Interdisciplinary Innovation Fund(JCXK2205)Sichuan University Post-Doctor Research Project(2023SCU12116).
文摘Background:Organic semiconductors have attracted much attention due to their excellent biocompatibility,tunable electronic structure,low cost,and antimicrobial phototherapy.However,owing to the high exciton binding energies,organic semiconductor is constrained by their short exciton diffusion length,leading to inefficient transportation of photogenerated carriers and deficient antibacterial capability.Methods:To address this issue,a quad-channel synergistic antibacterial nano-platform of copper sulfide/organic semiconductor(CuS/IEICO-4F)heterojunctions with enhanced photocatalytic performance is designed and manufactured,which can produce localized heat and raise the levels of extracellular reactive oxygen species under near-infrared laser irradiation.Simultaneously,the released Cu2+can consume intrabacterial glutathione,destroying the defense system and ultimately leading to bacterial inactivation.Results:In vitro antibacterial experiments demonstrate that the organic-inorganic bio-heterojunctions possess the potent antibacterial capacity and effective bacterial eradication.Conclusion:This countermeasure shows great promise for application in infectious wound regeneration.
基金supported by the Ministry of Science and Technology(2014CB643502,2016YFA0200200)the Natural Science Foundation of China(21404060,51422304,91433101)
文摘Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.
基金supported by the National Natural Science Foundation of China(62175262)the Fundamental Research Funds for the Central Universities(2020CX021)the Key R&D plan of Hunan Province(2022SK2101)。