加速器驱动次临界系统注入器Ⅰ,包括ECR离子源、低能传输线、射频四极加速单元、中能传输段和超导腔,注入器Ⅰ出口能够获得能量10 Me V的强流质子束流。为了调束和运行的需要,注入器Ⅰ将安装束流位置测量、束流截面测量、束流流强测量...加速器驱动次临界系统注入器Ⅰ,包括ECR离子源、低能传输线、射频四极加速单元、中能传输段和超导腔,注入器Ⅰ出口能够获得能量10 Me V的强流质子束流。为了调束和运行的需要,注入器Ⅰ将安装束流位置测量、束流截面测量、束流流强测量、束流发射度和能量测量,以及束流损失测量等束流参数测量装置。介绍了这些束流测量系统设计及其他方面的一些考虑。展开更多
An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the ...An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.展开更多
The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by L...The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by Los Alamos National Laboratory. We studied the application of the open-source Monte Carlo codes FLUKA and OpenMC to a coupled ADS calculation. The FLUKA code was used to simulate the reaction of highenergy protons with the nucleus of the target material in the ADS, which produces spallation neutrons. Information on the spallation neutrons, such as their energy, position,direction, and weight, can be recorded by a user-defined routine called FLUSCW provided by FLUKA. Then, the information was stored in an external neutron source file in HDF5 format by using a conversion code, as required by the OpenMC calculation. Finally, the fixed-source calculation function of OpenMC was applied to simulate the transport of spallation neutrons and obtain the distribution of the neutron flux in the core region. In the coupled calculation, the high-energy cross-section library JENDL4.0/HE in ACE format produced by NJOY2016 was applied in the OpenMC transport simulation. The OECD–ADS benchmark problem was calculated, and the results were compared with those obtained using MCNPX. It was found that the flux calculations performed by FLUKA–OpenMC and MCNPX were in agreement, so the coupling calculation method for ADS is reasonable and feasible.展开更多
基金supported by National Natural Science Foundation of China(1120517211475204)
文摘加速器驱动次临界系统注入器Ⅰ,包括ECR离子源、低能传输线、射频四极加速单元、中能传输段和超导腔,注入器Ⅰ出口能够获得能量10 Me V的强流质子束流。为了调束和运行的需要,注入器Ⅰ将安装束流位置测量、束流截面测量、束流流强测量、束流发射度和能量测量,以及束流损失测量等束流参数测量装置。介绍了这些束流测量系统设计及其他方面的一些考虑。
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.
基金supported by the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences(No.XDA03030102)
文摘The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by Los Alamos National Laboratory. We studied the application of the open-source Monte Carlo codes FLUKA and OpenMC to a coupled ADS calculation. The FLUKA code was used to simulate the reaction of highenergy protons with the nucleus of the target material in the ADS, which produces spallation neutrons. Information on the spallation neutrons, such as their energy, position,direction, and weight, can be recorded by a user-defined routine called FLUSCW provided by FLUKA. Then, the information was stored in an external neutron source file in HDF5 format by using a conversion code, as required by the OpenMC calculation. Finally, the fixed-source calculation function of OpenMC was applied to simulate the transport of spallation neutrons and obtain the distribution of the neutron flux in the core region. In the coupled calculation, the high-energy cross-section library JENDL4.0/HE in ACE format produced by NJOY2016 was applied in the OpenMC transport simulation. The OECD–ADS benchmark problem was calculated, and the results were compared with those obtained using MCNPX. It was found that the flux calculations performed by FLUKA–OpenMC and MCNPX were in agreement, so the coupling calculation method for ADS is reasonable and feasible.