化学吸收法是目前燃煤电厂CO2捕集中最成熟和最具规模化应用潜力的技术,但该技术能耗和成本较高,吸收剂的革新是CO2捕集技术性能提升的关键之一。本文从电厂烟气特点出发,结合对有机醇胺类吸收剂不同单体特性的分析和比较,优化设计了混...化学吸收法是目前燃煤电厂CO2捕集中最成熟和最具规模化应用潜力的技术,但该技术能耗和成本较高,吸收剂的革新是CO2捕集技术性能提升的关键之一。本文从电厂烟气特点出发,结合对有机醇胺类吸收剂不同单体特性的分析和比较,优化设计了混合胺吸收剂的配方,利用实验室气液反应平衡和反应焓一体化测试,筛选出优选配方HNC-5吸收剂,吸收反应焓较乙醇胺(MEA)低约20%,且吸收速率更快。真实烟气条件下1000 t/a CO2捕集中试装置测试表明,HNC-5性能指标与实验室测试结果一致,CO2捕集率高于90%,而再生热耗较MEA降低20%左右。12万t/a CO2捕集示范系统连续运行结果表明,运行期间HNC-5再生热耗1 t CO2约2.8 GJ,1 t CO2捕集成本降低约63元,吸收剂使用寿命更长,更有利于提高捕集系统的可用性和可靠性。展开更多
The degradation of the alkanolamine solvent used in the removal of acid gases from natural gas streams due to exposure to contaminants, thermal degradation and presence of oxygen or oxygen containing compounds will ch...The degradation of the alkanolamine solvent used in the removal of acid gases from natural gas streams due to exposure to contaminants, thermal degradation and presence of oxygen or oxygen containing compounds will change the solvent properties, such as heat transfer coefficient, diffusion coefficient, and mass transfer coefficient of the solvent. Therefore, characterization and quantification of amine degradation product becomes one of the important analyses to determine alkanolamine solvent’s health. In order to identify degradation products of alkanolamine solvent, analytical strategies by using mass spectrometry (MS) as detector have been studied extensively. In this work, due to the low concentration of the amine degradation product, a method was developed for identification of alkanolamine degradation products using LCMS-QTOF technique. A strategy for identification of trace degradation products has been identified. Six (6) alkanolamine degradation products had been identified by using LCMS-QTOF targeted analysis in the blended alkanolamine solvent used in natural gas processing plant. Another fifteen (15) molecular formulas having similarity in chemical structure to alkanolamine degradation products were identified using untargeted analysis strategy, as possible compounds related to degradation products. Using LCMS-QTOF via targeted and untargeted analysis strategy, without tedious column separation and reference standard, enables laboratory to provide a quick and indicative information for alkanolamine solvent’s organic degradation compounds identification in CO<sub>2</sub> adsorption, within reasonable analysis time.展开更多
文摘化学吸收法是目前燃煤电厂CO2捕集中最成熟和最具规模化应用潜力的技术,但该技术能耗和成本较高,吸收剂的革新是CO2捕集技术性能提升的关键之一。本文从电厂烟气特点出发,结合对有机醇胺类吸收剂不同单体特性的分析和比较,优化设计了混合胺吸收剂的配方,利用实验室气液反应平衡和反应焓一体化测试,筛选出优选配方HNC-5吸收剂,吸收反应焓较乙醇胺(MEA)低约20%,且吸收速率更快。真实烟气条件下1000 t/a CO2捕集中试装置测试表明,HNC-5性能指标与实验室测试结果一致,CO2捕集率高于90%,而再生热耗较MEA降低20%左右。12万t/a CO2捕集示范系统连续运行结果表明,运行期间HNC-5再生热耗1 t CO2约2.8 GJ,1 t CO2捕集成本降低约63元,吸收剂使用寿命更长,更有利于提高捕集系统的可用性和可靠性。
文摘The degradation of the alkanolamine solvent used in the removal of acid gases from natural gas streams due to exposure to contaminants, thermal degradation and presence of oxygen or oxygen containing compounds will change the solvent properties, such as heat transfer coefficient, diffusion coefficient, and mass transfer coefficient of the solvent. Therefore, characterization and quantification of amine degradation product becomes one of the important analyses to determine alkanolamine solvent’s health. In order to identify degradation products of alkanolamine solvent, analytical strategies by using mass spectrometry (MS) as detector have been studied extensively. In this work, due to the low concentration of the amine degradation product, a method was developed for identification of alkanolamine degradation products using LCMS-QTOF technique. A strategy for identification of trace degradation products has been identified. Six (6) alkanolamine degradation products had been identified by using LCMS-QTOF targeted analysis in the blended alkanolamine solvent used in natural gas processing plant. Another fifteen (15) molecular formulas having similarity in chemical structure to alkanolamine degradation products were identified using untargeted analysis strategy, as possible compounds related to degradation products. Using LCMS-QTOF via targeted and untargeted analysis strategy, without tedious column separation and reference standard, enables laboratory to provide a quick and indicative information for alkanolamine solvent’s organic degradation compounds identification in CO<sub>2</sub> adsorption, within reasonable analysis time.