The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy ab...The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy absorbers, heat exchangers, and acoustic liners. Foam property charts with scaling relations are presented, allowing scoping and selection through the use of material indices.展开更多
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of mela...The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam(MF)through electrostatic self-assembly and dip-coating adsorption process,realizing the integration of microwave absorption,infrared stealth,and flame retardant.Remarkably,the Ni/MXene-MF achieves a minimum reflection loss(RLmin)of−62.7 dB with a corresponding effective absorption bandwidth(EAB)of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm.Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks,which provided excellent impedance matching,dielectric loss,magnetic loss,interface polarization,and multiple attenuations.In addition,the Ni/MXene-MF endows low density,excellent heat insulation,infrared stealth,and flame-retardant functions.This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.展开更多
Absorption heat pump attracts increasing attention due to its advantages in low grade thermal energy utilization. It can be applied for waste heat reuse to save energy consumption, reduce environment pollution, and br...Absorption heat pump attracts increasing attention due to its advantages in low grade thermal energy utilization. It can be applied for waste heat reuse to save energy consumption, reduce environment pollution, and bring considerable economic benefit. In this paper, three important aspects for absorption heat pump for waste heat reuse are reviewed. In the first part, different absorption heat pump cycles are classified and introduced. Absorption heat pumps for heat amplification and absorp- tion heat transformer for temperature upgrading are included. Both basic single effect cycles and advanced cycles for better performance are introduced. In the second part, different working pairs, including the water based working pairs, ammonia based working pairs, alcohol based working pairs, and halogenated hydrocarbon based working pairs, for absorption heat pump are classified based on the refrigerant. In the third part, the applications of the absorption heat pump and absorption heat transformer for waste heat reuse in different industries are introduced. Based on the reviews in the three aspects, essential summary and future perspective are presented at last.展开更多
基金funds of the U.K. Engineering and Physical Sciences Research Council,partly by the U.S. Office of Naval Research ONR/ONRIFO,ONR of USA,国家自然科学基金
文摘The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy absorbers, heat exchangers, and acoustic liners. Foam property charts with scaling relations are presented, allowing scoping and selection through the use of material indices.
基金The authors thank National Natural Science Foundation of China(51803190)National Key R&D Program of China(2019YFA0706802)financial support.
文摘The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam(MF)through electrostatic self-assembly and dip-coating adsorption process,realizing the integration of microwave absorption,infrared stealth,and flame retardant.Remarkably,the Ni/MXene-MF achieves a minimum reflection loss(RLmin)of−62.7 dB with a corresponding effective absorption bandwidth(EAB)of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm.Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks,which provided excellent impedance matching,dielectric loss,magnetic loss,interface polarization,and multiple attenuations.In addition,the Ni/MXene-MF endows low density,excellent heat insulation,infrared stealth,and flame-retardant functions.This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
基金This research is supported by National Key Research and Development Program (Grant No. 2016YFB0601200). The support fi-om the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51521004) is also appreciated.
文摘Absorption heat pump attracts increasing attention due to its advantages in low grade thermal energy utilization. It can be applied for waste heat reuse to save energy consumption, reduce environment pollution, and bring considerable economic benefit. In this paper, three important aspects for absorption heat pump for waste heat reuse are reviewed. In the first part, different absorption heat pump cycles are classified and introduced. Absorption heat pumps for heat amplification and absorp- tion heat transformer for temperature upgrading are included. Both basic single effect cycles and advanced cycles for better performance are introduced. In the second part, different working pairs, including the water based working pairs, ammonia based working pairs, alcohol based working pairs, and halogenated hydrocarbon based working pairs, for absorption heat pump are classified based on the refrigerant. In the third part, the applications of the absorption heat pump and absorption heat transformer for waste heat reuse in different industries are introduced. Based on the reviews in the three aspects, essential summary and future perspective are presented at last.