期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
JIR-Net:用于光声层析图像重建的联合迭代重建网络
1
作者
候英飒
孙正
孙美晨
《中国图象图形学报》
CSCD
北大核心
2024年第3期823-838,共16页
目的 高质量的图像重建是光声层析成像(photoacoustic tomography,PAT)技术的关键,有限角度稀疏测量和组织非均匀的声学特性都会影响重建图像质量。采用迭代重建技术可在一定程度上提高图像质量,但是其结果依赖于有关成像目标的先验假...
目的 高质量的图像重建是光声层析成像(photoacoustic tomography,PAT)技术的关键,有限角度稀疏测量和组织非均匀的声学特性都会影响重建图像质量。采用迭代重建技术可在一定程度上提高图像质量,但是其结果依赖于有关成像目标的先验假设模型。而且在迭代优化过程中需要反复计算前向成像算子及其伴随算子,因此计算成本较高,需要合理选择正则化方法及其参数。为了解决该问题,提出一种根据不完备光声测量信号联合重建光吸收能量分布图和声速分布图的深度学习方法。方法 设计并搭建基于学习迭代策略的联合迭代重建网络(joint iterative reconstruction network,JIR-Net),网络由4个结构单元组成,每个单元包括特征提取、特征融合和重建3个模块。网络的输入是探测器在成像平面中采集的不完备光声信号和预设的常数声速,输出是重建的光吸收能量分布图和声速分布图。分别构建仿真、仿体和在体数据集,用于训练、验证和测试网络。在训练网络的过程中,将光吸收能量密度和声速的梯度下降信息整合到网络训练中,并利用反向传播梯度下降法求解非线性最小二乘问题。结果 数值仿真、仿体和在体实验结果表明:与交替优化法、U-Net后处理法和深度梯度下降法相比,JIR-Net重建的光吸收能量分布图的结构相似度可分别提高约39.5%、26.4%和7.6%,峰值信噪比可分别提高约95.6%、71.4%和15.5%。与交替优化法相比,JIR-Net重建的声速分布图的结构相似度和峰值信噪比可分别提高约34.4%和22.6%。结论 JIR-Net解决了由于有限角度稀疏测量和组织声速分布不均匀所致的光声图像质量下降问题,实现了从光声信号到高质量光吸收能量分布图和声速分布图的映射。
展开更多
关键词
图像重建技术
光声层析成像(PAT)
深度学习
光吸收能量密度
声速(SoS)
联合重建
梯度下降
原文传递
题名
JIR-Net:用于光声层析图像重建的联合迭代重建网络
1
作者
候英飒
孙正
孙美晨
机构
华北电力大学电子与通信工程系
华北电力大学河北省电力物联网技术重点实验室
出处
《中国图象图形学报》
CSCD
北大核心
2024年第3期823-838,共16页
基金
国家自然科学基金项目(62071181)。
文摘
目的 高质量的图像重建是光声层析成像(photoacoustic tomography,PAT)技术的关键,有限角度稀疏测量和组织非均匀的声学特性都会影响重建图像质量。采用迭代重建技术可在一定程度上提高图像质量,但是其结果依赖于有关成像目标的先验假设模型。而且在迭代优化过程中需要反复计算前向成像算子及其伴随算子,因此计算成本较高,需要合理选择正则化方法及其参数。为了解决该问题,提出一种根据不完备光声测量信号联合重建光吸收能量分布图和声速分布图的深度学习方法。方法 设计并搭建基于学习迭代策略的联合迭代重建网络(joint iterative reconstruction network,JIR-Net),网络由4个结构单元组成,每个单元包括特征提取、特征融合和重建3个模块。网络的输入是探测器在成像平面中采集的不完备光声信号和预设的常数声速,输出是重建的光吸收能量分布图和声速分布图。分别构建仿真、仿体和在体数据集,用于训练、验证和测试网络。在训练网络的过程中,将光吸收能量密度和声速的梯度下降信息整合到网络训练中,并利用反向传播梯度下降法求解非线性最小二乘问题。结果 数值仿真、仿体和在体实验结果表明:与交替优化法、U-Net后处理法和深度梯度下降法相比,JIR-Net重建的光吸收能量分布图的结构相似度可分别提高约39.5%、26.4%和7.6%,峰值信噪比可分别提高约95.6%、71.4%和15.5%。与交替优化法相比,JIR-Net重建的声速分布图的结构相似度和峰值信噪比可分别提高约34.4%和22.6%。结论 JIR-Net解决了由于有限角度稀疏测量和组织声速分布不均匀所致的光声图像质量下降问题,实现了从光声信号到高质量光吸收能量分布图和声速分布图的映射。
关键词
图像重建技术
光声层析成像(PAT)
深度学习
光吸收能量密度
声速(SoS)
联合重建
梯度下降
Keywords
image
reconstruction
techniques
photoacoustic
tomography(PAT)
deep
learning
absorbed
optical
energy
density
speed
of
sound(SoS)
joint
reconstruction
gradient
descent
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
JIR-Net:用于光声层析图像重建的联合迭代重建网络
候英飒
孙正
孙美晨
《中国图象图形学报》
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部