Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present p...Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present paper investigates experimentally the effect of orientation and normal load on alloy of copper and zinc, i.e. Brass, and calculates weight loss due to wear. To do so, a multi-orientational pin-on-disc apparatus was designed and fabricated. Experiments were carried out under normal load 05-20 N, speed 2000 rpm. Results show that the with-increasing load weight loss increases at all angular positions. The loss in weight is maximum at zero degree (horizontal position) and minimum at ninety degree (vertical position) for a particular load. Maximum wear occurs when the test specimen is held at 0° angle and minimum wear occurs when the specimen is held at 90° angle for given applied load. The circumferential distance travel is constant for all positions and for all loads but still mass loss varies.展开更多
In the present study, a mathematical model has been developed to predict the abrasive wear behavior of Al 6061. The experiments have been conducted using central composite design in the design of experiments (DOE) on ...In the present study, a mathematical model has been developed to predict the abrasive wear behavior of Al 6061. The experiments have been conducted using central composite design in the design of experiments (DOE) on pin-on-disc type wear testing machine, against abrasive media. A second order polynomial model has been developed for the prediction of wear loss. The model was developed by response surface method (RSM). Analysis of variance technique at the 95% confidence level was applied to check the validity of the model. The effect of volume percentage of reinforcement, applied load and sliding velocity on abrasive wear behavior was analyzed in detail. To judge the efficiency and ability of the model, the comparison of predicted and experimental response values outside the design conditions was carried out. The result shows, good correspondence, implying that, empirical models derived from response surface approach can be used to describe the tribological behavior of the above composite.展开更多
文摘Wear is a continuous process in which material is degraded with every cycle. Scientists are busy in improving the wear resistance. Approximately 75% failure in components or machine parts is due to wear. The present paper investigates experimentally the effect of orientation and normal load on alloy of copper and zinc, i.e. Brass, and calculates weight loss due to wear. To do so, a multi-orientational pin-on-disc apparatus was designed and fabricated. Experiments were carried out under normal load 05-20 N, speed 2000 rpm. Results show that the with-increasing load weight loss increases at all angular positions. The loss in weight is maximum at zero degree (horizontal position) and minimum at ninety degree (vertical position) for a particular load. Maximum wear occurs when the test specimen is held at 0° angle and minimum wear occurs when the specimen is held at 90° angle for given applied load. The circumferential distance travel is constant for all positions and for all loads but still mass loss varies.
文摘In the present study, a mathematical model has been developed to predict the abrasive wear behavior of Al 6061. The experiments have been conducted using central composite design in the design of experiments (DOE) on pin-on-disc type wear testing machine, against abrasive media. A second order polynomial model has been developed for the prediction of wear loss. The model was developed by response surface method (RSM). Analysis of variance technique at the 95% confidence level was applied to check the validity of the model. The effect of volume percentage of reinforcement, applied load and sliding velocity on abrasive wear behavior was analyzed in detail. To judge the efficiency and ability of the model, the comparison of predicted and experimental response values outside the design conditions was carried out. The result shows, good correspondence, implying that, empirical models derived from response surface approach can be used to describe the tribological behavior of the above composite.