Aims Intensive land management practices can compromise soil biodiversity,thus jeopardizing long-term soil productivity.Arbuscular mycorrhizal fungi(AMF)play a pivotal role in promoting soil productivity through oblig...Aims Intensive land management practices can compromise soil biodiversity,thus jeopardizing long-term soil productivity.Arbuscular mycorrhizal fungi(AMF)play a pivotal role in promoting soil productivity through obligate symbiotic associations with plants.However,it is not clear how properties of plant communities,especially species richness and composition influence the viability of AMF populations in soils.Methods Here we test whether monocultures of eight plant species from different plant functional groups,or a diverse mixture of plant species,maintain more viable AMF propagules.To address this question,we extracted AMF spores from 12-year old plant monocultures and mixtures and paired single AMF spores with single plants in a factorial design crossing AMF spore origin with plant species identity.Important Findings AMF spores from diverse plant mixtures were more successful at colonizing multiple plant species and plant individuals than AMF spores from plant monocultures.Furthermore,we found evidence that AMF spores originating from diverse mixtures more strongly increased biomass than AMF from monocultures in the legume Trifolium repens L.AMF viability and ability to interact with many plant species were greater when AMF spores originated from 12-year old mixtures than monocultures.Our results show for the first time that diverse plant communities can sustain AMF viability in soils and demonstrate the potential of diverse plant communities to maintain viable AMF propagules that are a key component to soil health and productivity.展开更多
In nature,plant communities are affected simultaneously by a variety of functionally dissimilar organisms both above and below the ground.However,there is a gap of knowledge on interactive effects of functionally diss...In nature,plant communities are affected simultaneously by a variety of functionally dissimilar organisms both above and below the ground.However,there is a gap of knowledge on interactive effects of functionally dissimilar organisms on plant communities that is needed to be filled to better understand and predict the general impact of biotic factors on plant communities.Methods We conducted a full-factorial mesocosm study to investigate the individual and combined impacts of above-and belowground functionally dissimilar organisms on a grassland plant community.We studied the effects of aboveground herbivores(Helix aspersa,Gastropoda),arbuscular mycorrhizal fungi(AMF;Glomus spp.,Glomeromycota)and endogeic earthworms(Aporrectodea spp.,Lumbricidae)on the diversity,structure and productivity of an experimental grassland plant community and each other.Important Findings Aboveground herbivory by snails decreased,AMF increased and earthworms had no effects on the diversity of the grassland plant community,while their combined effects were additive.The biomass of the plant community was negatively affected by snails and AMF,while no effects of earthworms or interaction effects were found.The plant species were differently affected by snails and AMF.No effects of the above-and belowground organisms on each other’s performance were detected.Since the effects of the functionally dissimilar organisms on the grassland plant community were mainly independent,the results indicate that their combined effects may be predicted by knowing the individual effects,at least under the conditions used in the present mesocosm study.展开更多
基金supported by the German Research Foundation(RO2397/7)conducted in the framework of the Jena Experiment(FOR 456/1451)+1 种基金with additional support from the Friedrich Schiller University of JenaFurther support was provided by the German Centre for Integrative Biodiversity Research(iDiv)Halle-Jena-Leipzig,funded by the German Research Foundation(FZT 118).
文摘Aims Intensive land management practices can compromise soil biodiversity,thus jeopardizing long-term soil productivity.Arbuscular mycorrhizal fungi(AMF)play a pivotal role in promoting soil productivity through obligate symbiotic associations with plants.However,it is not clear how properties of plant communities,especially species richness and composition influence the viability of AMF populations in soils.Methods Here we test whether monocultures of eight plant species from different plant functional groups,or a diverse mixture of plant species,maintain more viable AMF propagules.To address this question,we extracted AMF spores from 12-year old plant monocultures and mixtures and paired single AMF spores with single plants in a factorial design crossing AMF spore origin with plant species identity.Important Findings AMF spores from diverse plant mixtures were more successful at colonizing multiple plant species and plant individuals than AMF spores from plant monocultures.Furthermore,we found evidence that AMF spores originating from diverse mixtures more strongly increased biomass than AMF from monocultures in the legume Trifolium repens L.AMF viability and ability to interact with many plant species were greater when AMF spores originated from 12-year old mixtures than monocultures.Our results show for the first time that diverse plant communities can sustain AMF viability in soils and demonstrate the potential of diverse plant communities to maintain viable AMF propagules that are a key component to soil health and productivity.
文摘In nature,plant communities are affected simultaneously by a variety of functionally dissimilar organisms both above and below the ground.However,there is a gap of knowledge on interactive effects of functionally dissimilar organisms on plant communities that is needed to be filled to better understand and predict the general impact of biotic factors on plant communities.Methods We conducted a full-factorial mesocosm study to investigate the individual and combined impacts of above-and belowground functionally dissimilar organisms on a grassland plant community.We studied the effects of aboveground herbivores(Helix aspersa,Gastropoda),arbuscular mycorrhizal fungi(AMF;Glomus spp.,Glomeromycota)and endogeic earthworms(Aporrectodea spp.,Lumbricidae)on the diversity,structure and productivity of an experimental grassland plant community and each other.Important Findings Aboveground herbivory by snails decreased,AMF increased and earthworms had no effects on the diversity of the grassland plant community,while their combined effects were additive.The biomass of the plant community was negatively affected by snails and AMF,while no effects of earthworms or interaction effects were found.The plant species were differently affected by snails and AMF.No effects of the above-and belowground organisms on each other’s performance were detected.Since the effects of the functionally dissimilar organisms on the grassland plant community were mainly independent,the results indicate that their combined effects may be predicted by knowing the individual effects,at least under the conditions used in the present mesocosm study.