The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet...The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.展开更多
Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensio...Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensional momentum spectra, and the angular distributions of photoelectron for the laser pulses with different chirp rates, we show a very clear chirp dependence both in the multiphoton and tunneling ionization processes but no chirp dependence in the single-photon ionization. We find that the chirp dependence in the multiphoton ionization based ATI can be attributed to the excited bound states. In the single-photon and tunneling ionization regimes, the electron can be removed directly from the ground state and thus the excited states may not be very important. It indicates that the chirp dependence in the tunneling ionization based ATI processes is mainly due to the laser pulses with different chirp rates,展开更多
A laser phase determination method and a transfer function that includes a proportional term of a measured photoelectron energy spectrum are presented to directly measure the detailed temporal structure of a narrow ba...A laser phase determination method and a transfer function that includes a proportional term of a measured photoelectron energy spectrum are presented to directly measure the detailed temporal structure of a narrow bandwidth attosecond extreme-ultraviolet (EUV) pulse. The method is based on the spectrum measurement of an electron generated by EUV photo-ionization interacting with a femtosecond laser field. The results of the study suggest that measurements should be taken at 0° or 180° with respect to the linear laser polarization. The method has a temporal measurement range of about half a laser oscillation period. The temporal resolution also depends on the jitter and control precision of the laser and EUV pulses.展开更多
We investigate the low-energy structure (LES) in the above-threshold ionization spectrum at a mid-infrared laser wavelength with a semiclassical model. Using a softened Coulomb potential (CP) and changing the soft...We investigate the low-energy structure (LES) in the above-threshold ionization spectrum at a mid-infrared laser wavelength with a semiclassical model. Using a softened Coulomb potential (CP) and changing the softening parameter, we show that though the very low-energy structure (VLES) and high low-energy structure (HLES) are both due to the interaction between the ionic CP and the electron, the two structures have different physical mechanisms: the VLES can be attributed to the electron-ion Coulomb interaction at a rather small distance and the HLES is more likely to be ascribed to the electron-ion Coulomb interaction at a large distance.展开更多
Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectru...Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.展开更多
Using the frequency-domain theory, we investigate the above-threshold ionization(ATI) process of an atom in twocolor laser fields. When both photon energies of the two-color laser fields are much smaller than the at...Using the frequency-domain theory, we investigate the above-threshold ionization(ATI) process of an atom in twocolor laser fields. When both photon energies of the two-color laser fields are much smaller than the atomic ionization threshold, the ATI spectrum depends on the angle between the two lasers' polarization directions. While when the photon energy of one laser is comparable with or larger than the atomic ionization threshold, the ATI spectrum is independent of the angle, and only several dips appear at certain angles. By analyzing the contributions of different quantum channels, we find that, for the case that both frequencies of the two color lasers are low, the quantum interferences between the channels are strong, and hence the spectrum changes with the angle between the two lasers' polarization directions. While for the case that the frequency of one of the two color lasers is high, the contributions of the channels to the ATI spectrum decrease dramatically with increasing channel order, hence the interferences between the channels disappear, and the ATI spectrum has a step-like structure, which is independent of the angle between the two lasers' polarizations. These results can shed light on the study of the corresponding relation between classical and quantum mechanisms of the matter–laser interaction in high-frequency laser fields.展开更多
We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in...We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.展开更多
We theoretically investigate the photoelectron emission from an atom irradiated by an amplitude modulated sinusoidally phase-modulated pulse through solving the time-dependent Schr¨odinger equation in the momentu...We theoretically investigate the photoelectron emission from an atom irradiated by an amplitude modulated sinusoidally phase-modulated pulse through solving the time-dependent Schr¨odinger equation in the momentum space. By controlling the phase amplitude of the pulse in the frequency domain, it can be found that the photoelectron spectra appear as explicit interference phenomena, which originated from the interference between the directly ionized electron and the ionization of the pre-excited atom from different subpulses.展开更多
We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that...We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that, the intensity of low order harmonic and photoelectron are gradually enhanced with the increase of the laser intensity, when the laser frequency is not in resonance with the transition frequency between the laser-induced high excited states and the ground state. If the resonance occurs, the intensity of the lower order harmonic is reduced and the interference can be observed in the lower order photoelectron spectra.展开更多
The wave packet evolution of an atom irradiated by an intense laser pulse is systematically investigated by using the numerical solution of the time-dependent Schr?dinger equation.There are two types of spatial interf...The wave packet evolution of an atom irradiated by an intense laser pulse is systematically investigated by using the numerical solution of the time-dependent Schr?dinger equation.There are two types of spatial interference structures in the time-dependent evolution of the atomic wave packet.With the increasing of the evolution time,the interference fringe spacing for typeⅠ(typeⅡ)becomes larger(smaller).As the wavelength of the incident laser increases,the interference of the wave packet is changed from typeⅡto typeⅠ,and the shift of interference type can be attributed to the contribution of excited states by using the energy analysis of the time-dependent wave function.展开更多
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 10874096 and 20633070)
文摘The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11664035,11465016,11764038,11364038,and 11564033)
文摘Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensional momentum spectra, and the angular distributions of photoelectron for the laser pulses with different chirp rates, we show a very clear chirp dependence both in the multiphoton and tunneling ionization processes but no chirp dependence in the single-photon ionization. We find that the chirp dependence in the multiphoton ionization based ATI can be attributed to the excited bound states. In the single-photon and tunneling ionization regimes, the electron can be removed directly from the ground state and thus the excited states may not be very important. It indicates that the chirp dependence in the tunneling ionization based ATI processes is mainly due to the laser pulses with different chirp rates,
文摘A laser phase determination method and a transfer function that includes a proportional term of a measured photoelectron energy spectrum are presented to directly measure the detailed temporal structure of a narrow bandwidth attosecond extreme-ultraviolet (EUV) pulse. The method is based on the spectrum measurement of an electron generated by EUV photo-ionization interacting with a femtosecond laser field. The results of the study suggest that measurements should be taken at 0° or 180° with respect to the linear laser polarization. The method has a temporal measurement range of about half a laser oscillation period. The temporal resolution also depends on the jitter and control precision of the laser and EUV pulses.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10925420,11074026,11174330,and 11274050)the National Basic Research Program of China (Grant Nos.2011CB808102 and 2013CB922201)
文摘We investigate the low-energy structure (LES) in the above-threshold ionization spectrum at a mid-infrared laser wavelength with a semiclassical model. Using a softened Coulomb potential (CP) and changing the softening parameter, we show that though the very low-energy structure (VLES) and high low-energy structure (HLES) are both due to the interaction between the ionic CP and the electron, the two structures have different physical mechanisms: the VLES can be attributed to the electron-ion Coulomb interaction at a rather small distance and the HLES is more likely to be ascribed to the electron-ion Coulomb interaction at a large distance.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grants Nos.11274141,11034003,11304116,11274001,and 11247024)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20140101168JC)
文摘Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474348 and 61275128)
文摘Using the frequency-domain theory, we investigate the above-threshold ionization(ATI) process of an atom in twocolor laser fields. When both photon energies of the two-color laser fields are much smaller than the atomic ionization threshold, the ATI spectrum depends on the angle between the two lasers' polarization directions. While when the photon energy of one laser is comparable with or larger than the atomic ionization threshold, the ATI spectrum is independent of the angle, and only several dips appear at certain angles. By analyzing the contributions of different quantum channels, we find that, for the case that both frequencies of the two color lasers are low, the quantum interferences between the channels are strong, and hence the spectrum changes with the angle between the two lasers' polarization directions. While for the case that the frequency of one of the two color lasers is high, the contributions of the channels to the ATI spectrum decrease dramatically with increasing channel order, hence the interferences between the channels disappear, and the ATI spectrum has a step-like structure, which is independent of the angle between the two lasers' polarizations. These results can shed light on the study of the corresponding relation between classical and quantum mechanisms of the matter–laser interaction in high-frequency laser fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the STU Scientific Research Foundation for Talentsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300)the National Natural Science Foundation of China(Grants Nos.11774129,11274141,11627807,11604119,and 11534004)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC)
文摘We theoretically investigate the photoelectron emission from an atom irradiated by an amplitude modulated sinusoidally phase-modulated pulse through solving the time-dependent Schr¨odinger equation in the momentum space. By controlling the phase amplitude of the pulse in the frequency domain, it can be found that the photoelectron spectra appear as explicit interference phenomena, which originated from the interference between the directly ionized electron and the ionization of the pre-excited atom from different subpulses.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11774129,11274141,11627807,11604119,and 11534004)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC)
文摘We simultaneously investigate variations of a low order harmonic and photoelectron emission with an incident laser intensity by solving the time-dependent Schr6dinger equation in a momentum space. It can be found that, the intensity of low order harmonic and photoelectron are gradually enhanced with the increase of the laser intensity, when the laser frequency is not in resonance with the transition frequency between the laser-induced high excited states and the ground state. If the resonance occurs, the intensity of the lower order harmonic is reduced and the interference can be observed in the lower order photoelectron spectra.
基金Project partially supported by the National Key Research and Development Program of China(Grant Nos.2019YFA0307700 and 2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11627807,11534004,11975012,and 11774129)+1 种基金the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC)the Science and Technology Project of the Jilin Provincial Education Department,China(Grant No.JJKH20190183KJ)
文摘The wave packet evolution of an atom irradiated by an intense laser pulse is systematically investigated by using the numerical solution of the time-dependent Schr?dinger equation.There are two types of spatial interference structures in the time-dependent evolution of the atomic wave packet.With the increasing of the evolution time,the interference fringe spacing for typeⅠ(typeⅡ)becomes larger(smaller).As the wavelength of the incident laser increases,the interference of the wave packet is changed from typeⅡto typeⅠ,and the shift of interference type can be attributed to the contribution of excited states by using the energy analysis of the time-dependent wave function.