This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from ...This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from different sources in nature. It is demonstrated that the biodegradation or thermodegradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ13C1 value ranges from ?110% to ?50% for microbial gases but from ?50% to ?35% (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δ D values characterized by normal distribution, i.e. δ13C1< δ 13C2< δ 13C3< δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ , and by a positive correlation between the δ 13C and δ D values. Simple carbon-bearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ13C1 heavier than ?30‰ Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ13C1> δ 13C2> δ 13C3> δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ . The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from ?30.5% to ?16.7% with a very narrow δ D range between ?203‰?196‰ These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ C values, and a negative correlation between their δ 13C and δ C values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas res展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 49233060, 40572087)Key Technologies R & D Programme (Grant Nos.96110010602, 2008ZX05008)the Foundation of Chinese Academy of Sciences (Grant No. K2000315)
文摘This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from different sources in nature. It is demonstrated that the biodegradation or thermodegradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ13C1 value ranges from ?110% to ?50% for microbial gases but from ?50% to ?35% (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δ D values characterized by normal distribution, i.e. δ13C1< δ 13C2< δ 13C3< δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ , and by a positive correlation between the δ 13C and δ D values. Simple carbon-bearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ13C1 heavier than ?30‰ Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ13C1> δ 13C2> δ 13C3> δ 13C4 and $ \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } $ . The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from ?30.5% to ?16.7% with a very narrow δ D range between ?203‰?196‰ These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ C values, and a negative correlation between their δ 13C and δ C values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas res