Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches.However,more developments are still needed for better preparation of isolated few-spin sy...Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches.However,more developments are still needed for better preparation of isolated few-spin systems.In this work,we demonstrate a highly nonlinear spin-discriminating(HNSD)method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms.With this method,we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest,which leads to a highly isolated few-spin system under minimal perturbation.Furthermore,the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale.Using the HNSD method,we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas.Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.展开更多
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program under Grant No.XDB35020100the National Key Research and Development Program of China under Grant No.2018YFA0305601+1 种基金the National Natural Science Foundation of China under Grant No.11874073the Hefei National Laboratory and the Scientific and Technological Innovation 2030 Key Program of Quantum Communication and Quantum Computing under Grant No.2021ZD0301903。
文摘Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches.However,more developments are still needed for better preparation of isolated few-spin systems.In this work,we demonstrate a highly nonlinear spin-discriminating(HNSD)method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms.With this method,we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest,which leads to a highly isolated few-spin system under minimal perturbation.Furthermore,the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale.Using the HNSD method,we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas.Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.