期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
不同输入变量对光伏功率异常数据修复的影响分析 被引量:1
1
作者 高冰 李国翊 高丽娟 《河北电力技术》 2024年第1期72-76,共5页
光伏电站及分布式光伏设备输出功率数据记录因量测设备异常、通信故障、信号干扰等因素会出现异常,影响电网决策。因此,本文提出基于遗传算法优化初值的反向传播神经网络,利用GA-BP神经网络进行异常数据修复,建立线性内插法数据修复模... 光伏电站及分布式光伏设备输出功率数据记录因量测设备异常、通信故障、信号干扰等因素会出现异常,影响电网决策。因此,本文提出基于遗传算法优化初值的反向传播神经网络,利用GA-BP神经网络进行异常数据修复,建立线性内插法数据修复模型作为对照组,研究了以数值气象记录(辐照强度、气温、相对湿度、风速及风向)、天气类型、邻近相似电站功率等参数的不同组合作为神经网络的输入变量对修复效果的影响。实例分析表明,采用全部的输入变量可取得较好的修复效果。 展开更多
关键词 光伏发电 人工神经网络 异常数据修复 遗传算法 输入变量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部