N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was...N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was confirmed by ATR-FTIR,XPS and water contact angle measurements.Through the experiments with plateletadhesion and protein adhesion assay in vitro,the two materials studied,including poly-DMMCA gel,all show excellentnonthrombogenicity.This confirms once again that the zwitterionic molecular structure on the surfaces of materials isessential for improving their nonthrombogenicity and biocompatibility.展开更多
In order to improve the nonthrombogenicity of chitin,a new monomer,N,N-dimethyl(β-hydroxyethyloxyethyl) ammonium propanesulfonate(DHAPS)was designed,synthesized and grafted onto the chitin membrane by using hexamethy...In order to improve the nonthrombogenicity of chitin,a new monomer,N,N-dimethyl(β-hydroxyethyloxyethyl) ammonium propanesulfonate(DHAPS)was designed,synthesized and grafted onto the chitin membrane by using hexamethylene diisocyanate(HDI)as a coupling agent.Surface analysis of the grafted membranes by ATR-FTIR and XPS confirms that DHAPS has been successfully grafted onto the membrane surface.The platelet resistant property of the grafted membranes was evaluated by a platelet-rich plasma adhesion method.The results showed that platelet-adhesive resistance of the modified membrane has been greatly improved.展开更多
In order to construct the zwitterionic structure of phosphorylcholine onto the surface of biomaterials, five novel phospholanes containing hydroxyl group were synthesized from the corresponding diol and 2-chloro-2-oxo...In order to construct the zwitterionic structure of phosphorylcholine onto the surface of biomaterials, five novel phospholanes containing hydroxyl group were synthesized from the corresponding diol and 2-chloro-2-oxo-1,3,2-dioxaphospholane in the presence of THF. Then, five novel phosphorylcholines containing hydroxyl group were prepared by the corresponding phospholane and anhydrous trimethylamine in the presence of acetonitrile. Their structures were characterized by FTIR, 1H NMR and elemental analysis.展开更多
Biocompatibility,particularly blood compatibility is the most important property required for biomedical materials.The improvement of blood compatibility is always an important research task for biomaterial research a...Biocompatibility,particularly blood compatibility is the most important property required for biomedical materials.The improvement of blood compatibility is always an important research task for biomaterial research and development.It is an important way to develop biomaterials by constructing special molecules onto the proper mechanical material surface.Polyetherurethanes are widely used as biomaterials due to their good biocompatibility and mechanical properties.Nevertheless,their blood compatibility is still not adequate for the more demanding applications.The purpose of present study was to synthesis a novel nonthrombogenic biomaterial by modifying the surface of polyetherurethane.Ozone was used to introduce active peroxide groups onto polyetherurethane surface and graft polymerization of N,N dimethyl N methacryloxyethyl N (3 sulfopropyl) ammonium (DMMSA), a sulfobetaine structure,onto the ozone activated polyetherurethane surface was conducted.The nonthrombogenic properties of grafted film were also studied.The grafted film was characterized by ATR FTIR,XPS and contact angle measurement.The ATR FTIR,XPS of the grafted PU film indicated that the graft polymerization did take place,the grafted PU film surface was covered with the DMMSA polymer.The grafting yields in different condition were studied.The grafting yields increased with the increase of the monomer concentration.Water absorption and contact angle showed that the hydrophilicity of the film had been improved greatly,and the hydrophilicity of the film increased with the grafting yield.The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma and scanning electron microscopy observation using PU film as the reference.No platelet adhesion was observed for the grafted films incubated for 60 min and 180 min,however,the ungrafted PU film was covered with platelet.The result of platelet adhesion experiment indicated that the PDMMSA chains could prevent platelet adhesion.That means this new material is expected t展开更多
A novel silane coupling agent bearing sulfobetaine group, N,N-diethyl-N-(3-sulfopropyl)-aminopropyl- trimethoxysilane (DESATS), was first designed, synthesized and characterized. Its solution property was studied ...A novel silane coupling agent bearing sulfobetaine group, N,N-diethyl-N-(3-sulfopropyl)-aminopropyl- trimethoxysilane (DESATS), was first designed, synthesized and characterized. Its solution property was studied by means of dynamic light scattering. DESATS was successfully bonded onto the surface of the glass and proved by ESCA. Platelet adhesion assay in vitro indicated that the nonthrombogenicity of glass slide modified with DESATS is greatly improved.展开更多
基金This work was financially supported by the Special Funds for Major State Basic Research Projects of China(G1999064705).
文摘N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was confirmed by ATR-FTIR,XPS and water contact angle measurements.Through the experiments with plateletadhesion and protein adhesion assay in vitro,the two materials studied,including poly-DMMCA gel,all show excellentnonthrombogenicity.This confirms once again that the zwitterionic molecular structure on the surfaces of materials isessential for improving their nonthrombogenicity and biocompatibility.
基金This work was funded by the special fund for major state basic research projects(No.G1999064705).
文摘In order to improve the nonthrombogenicity of chitin,a new monomer,N,N-dimethyl(β-hydroxyethyloxyethyl) ammonium propanesulfonate(DHAPS)was designed,synthesized and grafted onto the chitin membrane by using hexamethylene diisocyanate(HDI)as a coupling agent.Surface analysis of the grafted membranes by ATR-FTIR and XPS confirms that DHAPS has been successfully grafted onto the membrane surface.The platelet resistant property of the grafted membranes was evaluated by a platelet-rich plasma adhesion method.The results showed that platelet-adhesive resistance of the modified membrane has been greatly improved.
文摘In order to construct the zwitterionic structure of phosphorylcholine onto the surface of biomaterials, five novel phospholanes containing hydroxyl group were synthesized from the corresponding diol and 2-chloro-2-oxo-1,3,2-dioxaphospholane in the presence of THF. Then, five novel phosphorylcholines containing hydroxyl group were prepared by the corresponding phospholane and anhydrous trimethylamine in the presence of acetonitrile. Their structures were characterized by FTIR, 1H NMR and elemental analysis.
文摘Biocompatibility,particularly blood compatibility is the most important property required for biomedical materials.The improvement of blood compatibility is always an important research task for biomaterial research and development.It is an important way to develop biomaterials by constructing special molecules onto the proper mechanical material surface.Polyetherurethanes are widely used as biomaterials due to their good biocompatibility and mechanical properties.Nevertheless,their blood compatibility is still not adequate for the more demanding applications.The purpose of present study was to synthesis a novel nonthrombogenic biomaterial by modifying the surface of polyetherurethane.Ozone was used to introduce active peroxide groups onto polyetherurethane surface and graft polymerization of N,N dimethyl N methacryloxyethyl N (3 sulfopropyl) ammonium (DMMSA), a sulfobetaine structure,onto the ozone activated polyetherurethane surface was conducted.The nonthrombogenic properties of grafted film were also studied.The grafted film was characterized by ATR FTIR,XPS and contact angle measurement.The ATR FTIR,XPS of the grafted PU film indicated that the graft polymerization did take place,the grafted PU film surface was covered with the DMMSA polymer.The grafting yields in different condition were studied.The grafting yields increased with the increase of the monomer concentration.Water absorption and contact angle showed that the hydrophilicity of the film had been improved greatly,and the hydrophilicity of the film increased with the grafting yield.The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma and scanning electron microscopy observation using PU film as the reference.No platelet adhesion was observed for the grafted films incubated for 60 min and 180 min,however,the ungrafted PU film was covered with platelet.The result of platelet adhesion experiment indicated that the PDMMSA chains could prevent platelet adhesion.That means this new material is expected t
基金This work was support by the Special Funds for Major State Basic Research Projects of China(G1999064705).
文摘A novel silane coupling agent bearing sulfobetaine group, N,N-diethyl-N-(3-sulfopropyl)-aminopropyl- trimethoxysilane (DESATS), was first designed, synthesized and characterized. Its solution property was studied by means of dynamic light scattering. DESATS was successfully bonded onto the surface of the glass and proved by ESCA. Platelet adhesion assay in vitro indicated that the nonthrombogenicity of glass slide modified with DESATS is greatly improved.