This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer...This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.展开更多
With ultrafast laser systems reaching presently 10 PW peak power or operating at high repetition rates,research towards ensuring the long-term,trouble-free performance of all laser-exposed optical components is critic...With ultrafast laser systems reaching presently 10 PW peak power or operating at high repetition rates,research towards ensuring the long-term,trouble-free performance of all laser-exposed optical components is critical.Our work is focused on providing insight into the optical material behavior at fluences below the standardized laser-induced damage threshold(LIDT)value by implementing a simultaneous dual analysis of surface emitted particles using a Langmuir probe(LP)and the target current(TC).HfO_(2) and ZrO_(2) thin films deposited on fused silica substrates by pulsed laser deposition at various O_(2) pressures for defect and stoichiometry control were irradiated by Gaussian,ultrashort laser pulses(800 nm,10 Hz,70 fs)in a wide range of fluences.Both TC and LP collected signals were in good agreement with the existing theoretical description of laser–matter interaction at an ultrashort time scale.Our approach for an in situ LIDT monitoring system provides measurable signals for below-threshold irradiation conditions that indicate the endurance limit of the optical surfaces in the single-shot energy scanning mode.The LIDT value extracted from the LP-TC system is in line with the multipulse statistical analysis done with ISO 21254-2:2011(E).The implementation of the LP and TC as on-shot diagnostic tools for optical components will have a significant impact on the reliability of next-generation ultrafast and high-power laser systems.展开更多
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ...The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.展开更多
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of...The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.展开更多
The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was d...The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was designed and employed as the support for loading AuPd bimetal with different proportions to synthesize AuPd/HB-ZrO_(2) catalysts.The effects of surface chemistry,oxygen defects,bimetal interaction and metal-support interaction of AuPd/HB-ZrO_(2) on catalytic performance for the selective oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA)were systematically investigated.The Au 2 Pd1/HB-ZrO_(2) catalyst afforded a satisfactory FDCA yield of 99.9%from HMF oxidation using O_(2) as the oxidant in water,accompanied with an excellent FDCA productivity at 97.6 mmol g^(−1) h^(−1).This work offers fresh insights into rationally designing efficient catalysts with oxygen-rich defects for the catalytic upgrading of biomass platform chemicals.展开更多
基金funded by China Postdoctoral Science Foundation(No.2021M700569)Chongqing Postdoctoral Science Foundation(No.7 cstc2021jcyj-bshX0087)。
文摘This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.
基金This work was supported by the Romanian Ministry of Education and Research,under Nucleus Project LAPLAS VII contract No.30N/2023,ELI RO 2020-12,PCE 104/2022,PED 580/2022We would also like to acknowledge the support from project code PN 2321 sponsored by the Romanian Ministry of Research,Innovation,and Digitalisation by the Nucleus program.Financial support of the ASUR platform was provided by the European Community and LaserLab Europe programs EU-H2020654148 and 871124(projects Nos.CNRS-LP3002460 and CNRS-LP3002589).
文摘With ultrafast laser systems reaching presently 10 PW peak power or operating at high repetition rates,research towards ensuring the long-term,trouble-free performance of all laser-exposed optical components is critical.Our work is focused on providing insight into the optical material behavior at fluences below the standardized laser-induced damage threshold(LIDT)value by implementing a simultaneous dual analysis of surface emitted particles using a Langmuir probe(LP)and the target current(TC).HfO_(2) and ZrO_(2) thin films deposited on fused silica substrates by pulsed laser deposition at various O_(2) pressures for defect and stoichiometry control were irradiated by Gaussian,ultrashort laser pulses(800 nm,10 Hz,70 fs)in a wide range of fluences.Both TC and LP collected signals were in good agreement with the existing theoretical description of laser–matter interaction at an ultrashort time scale.Our approach for an in situ LIDT monitoring system provides measurable signals for below-threshold irradiation conditions that indicate the endurance limit of the optical surfaces in the single-shot energy scanning mode.The LIDT value extracted from the LP-TC system is in line with the multipulse statistical analysis done with ISO 21254-2:2011(E).The implementation of the LP and TC as on-shot diagnostic tools for optical components will have a significant impact on the reliability of next-generation ultrafast and high-power laser systems.
基金supported by the National Natural Science Foundation of China under grant numbers 22172032,U22A20431 and U19B2003。
文摘The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.
文摘The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20200917)the China Postdoctoral Science Foundation(No.2021M701474)+1 种基金Youth Talent Cultivation Plan of Jiangsu UniversityCollaborative Innovation Center for Water Treatment Technology and Materials.
文摘The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was designed and employed as the support for loading AuPd bimetal with different proportions to synthesize AuPd/HB-ZrO_(2) catalysts.The effects of surface chemistry,oxygen defects,bimetal interaction and metal-support interaction of AuPd/HB-ZrO_(2) on catalytic performance for the selective oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA)were systematically investigated.The Au 2 Pd1/HB-ZrO_(2) catalyst afforded a satisfactory FDCA yield of 99.9%from HMF oxidation using O_(2) as the oxidant in water,accompanied with an excellent FDCA productivity at 97.6 mmol g^(−1) h^(−1).This work offers fresh insights into rationally designing efficient catalysts with oxygen-rich defects for the catalytic upgrading of biomass platform chemicals.