All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promisi...All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promising candidates due to their excellent stability against 4 V-class layered cathodes. Compared with Li3InCl6or Li_(3)ScCl_(6), the low ionic conductivity of Li_(2)ZrCl_(6)(LZC) is a challenge despite its low raw-material cost. Herein, we report a family of Li-Richened chloride, Li_(2+2x)Zr_(1–x)MxCl_(6), which can be used in highperformance ASSLBs owing to its high ionic conductivity(up to 0.62 mS cm^(-1)). The theoretical(ab initio molecular dynamics simulations) and experimental results prove that the strategy of aliovalent substitution with divalent metals to obtain Li-Richened LZC is effective in improving Li^(+)conductivity in SSEs. By combining Li_(2.1)Zr_(0.95)Mg_(0.05)Cl_(6)(Mg5-LZC) with a Li–In anode and a LiCoO_(2)cathode, a room-temperature ASSLBs with excellent long-term cycling stability(88% capacity retention at 0.3C for 100 cycles) and highrate capability(121 m A h g^(-1)at 1C) is reported. This exploratory work sheds light on improving the Li^(+)conductivity of low-cost LZC-family SSEs for constructing high performance ASSLBs.展开更多
2,3-Dihydroquinazolin-4(1H)-ones have been synthesized in the high to excellent yields via condensation of 2-aminobenzamide with aldehydes and ketones in the presence of catalytic amount of ZrCl_4 in EtOH at room te...2,3-Dihydroquinazolin-4(1H)-ones have been synthesized in the high to excellent yields via condensation of 2-aminobenzamide with aldehydes and ketones in the presence of catalytic amount of ZrCl_4 in EtOH at room temperature.Mild reaction conditions, clean reaction media,simple workup and easy purification are advantages of this methodology.展开更多
Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for C...Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.展开更多
Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-clas...Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-class cathodes and low bill-of-material(BOM) cost.However,despite the benefits,the poor chemical/electrochemical stability of LZC against Li metal causes the deterioration of Li/LZC interface,which has a detrimental inhibition on Li^(+) transport in ASSLBs.Herein,we report a composite SSE combining by LZC and argyrodite buffer layer(Li_(6)PS_(5)Cl,LPSC) that prevent the unfavorable interaction between LZC and Li metal.The Li/LPSC-LZC-LPSC/Li symmetric cell stably cycles for over 1000 h at 0.3 mA/cm^(2)(0.15mAh/cm^(2)) and has a high critical current density(CCD) value of 2.1 mA/cm^(2)at 25 ℃,Under high temperature(60℃) which promotes the reaction between Li and LZC,symmetric cell fabricated with composite SSE also display stable cycling performance over 1200h at 0.3 mAh/cm^(2).Especially,the Li/NCM ASSLBs fabricated with composite SSE exhibit a high initial coulombic efficiency,as well as superior cycling and rate performance.This simple and efficient strategy will be instrumental in the development of halidebased high-performance ASSLBs.展开更多
8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The suppor...8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supportedpolymerization results showed that the molecular weight of polyethylene increased while the molecular weight distributionbecame wider and the molecular chains of oligomers remaning in the final solution became shorter as compared to theoligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as theCp_2ZrCl_2 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while α-olefin selectivity increased.展开更多
Thermodynamic studies were carried out for the vapor complex of sodium chloride with zirconium tetrachloride at 718-778 K and 0.5-2.5 kPa by using high temperature phase equilibrium-quenching experiments, taking close...Thermodynamic studies were carried out for the vapor complex of sodium chloride with zirconium tetrachloride at 718-778 K and 0.5-2.5 kPa by using high temperature phase equilibrium-quenching experiments, taking closed Pyrex glass ampoules as the reaction containers. The results show that the sole predominant vapor complex is Na_2ZrCl_6 for the ZrCl4-NaCl system under the experimental conditions. The thermodynamic equilibrium constants and other thermodynamic functions of the reaction 2NaCl(s)+ZrCl4(g)=Na_2ZrCl_6(g) have been derived from the measurements. The results for the changes in enthalpy and entropy are △H0=(-70.1±1.5) kJ/mol and △S0=(-105.9±2.0) J/(mol·K) in the temperature range.展开更多
Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical sta...Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability,respectively.Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal.Zr-based lithium halides with low cost and high stability possess great potential.Herein,a small amount of In^(3+)is introduced in Li_(2)ZrCl_(6) to synthesize Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6) electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm.Solid-state batteries using Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6)/Li_(5.5)PS_(4.5)Cl_(1.5) bilayer solid electrolytes combined with Li-In anode and pristine LiNi_(0.7)Mn_(0.2)Co_(0.1)O_(2) cathode deliver high initial discharge capacities under different cut-off voltages.This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes,promoting their applications in solid-state batteries.展开更多
Three semicarbazonyl ligands were synthesized and used to form six novel organometallic complexes with Ph2SnCl2 and Cp2ZrCl2. All these complexes were characterized by IR 1H NMR MS and elemental analysis.
基金the financial support from the Guangdong Natural Science Funds, China (2019A1515010675)the Science and Technology Project of Shenzhen, China (JCYJ20210324094206019)+5 种基金the financial support from the National Natural Science Foundation of China (52102284)the Department of Science and Technology of Guangxi Province, China (AB21220027, AD19110077)the Guangxi innovation research team project, China (Grant No.2018GXNSFGA281001)the Guangxi Natural Science Foundation, China (2018GXNSFAA138064, 2020GXNSFAA159037, and 2020GXNSFAA159059)the Guangxi Key Laboratory of Manufacturing Systems Foundation, China (20-065-40-005Z)the Engineering Research Center Foundation of Electronic Information Materials and Devices, China (EIMD-AA202005)。
文摘All-solid-state Li batteries(ASSLBs) with solid-state electrolytes(SSEs) are exciting candidates for nextgeneration energy storage and receive considerable attention owing to their reliability. Halide SSEs are promising candidates due to their excellent stability against 4 V-class layered cathodes. Compared with Li3InCl6or Li_(3)ScCl_(6), the low ionic conductivity of Li_(2)ZrCl_(6)(LZC) is a challenge despite its low raw-material cost. Herein, we report a family of Li-Richened chloride, Li_(2+2x)Zr_(1–x)MxCl_(6), which can be used in highperformance ASSLBs owing to its high ionic conductivity(up to 0.62 mS cm^(-1)). The theoretical(ab initio molecular dynamics simulations) and experimental results prove that the strategy of aliovalent substitution with divalent metals to obtain Li-Richened LZC is effective in improving Li^(+)conductivity in SSEs. By combining Li_(2.1)Zr_(0.95)Mg_(0.05)Cl_(6)(Mg5-LZC) with a Li–In anode and a LiCoO_(2)cathode, a room-temperature ASSLBs with excellent long-term cycling stability(88% capacity retention at 0.3C for 100 cycles) and highrate capability(121 m A h g^(-1)at 1C) is reported. This exploratory work sheds light on improving the Li^(+)conductivity of low-cost LZC-family SSEs for constructing high performance ASSLBs.
文摘2,3-Dihydroquinazolin-4(1H)-ones have been synthesized in the high to excellent yields via condensation of 2-aminobenzamide with aldehydes and ketones in the presence of catalytic amount of ZrCl_4 in EtOH at room temperature.Mild reaction conditions, clean reaction media,simple workup and easy purification are advantages of this methodology.
基金National Natural Science Foundation of China (No. 20272062)
文摘Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.
基金B.Tian acknowledges the financial support from the Science and Technology Project of Shenzhen(No.JCYJ20210324094206019)X.Huang acknowledges the financial support from the National Natural Science Foundation of China(No.52102284)+2 种基金Z.Yu acknowledges Department of Science and Technology of Guangxi Province(Nos.AB21220027,AD19110077)Guangxi Key Laboratory of Manufacturing Systems Foundation(No.20-065-40-005Z)Engineering Research Center Foundation of Electronic Information Materials and Devices(No.EIMD-AA202005).
文摘Li_(2)ZrCl_(6)(LZC) solid-state electrolytes(SSEs) have been recognized as a candidate halide SSEs for allsolid-state Li batteries(ASSLBs) with high energy density and safety due to its great compatibility with4V-class cathodes and low bill-of-material(BOM) cost.However,despite the benefits,the poor chemical/electrochemical stability of LZC against Li metal causes the deterioration of Li/LZC interface,which has a detrimental inhibition on Li^(+) transport in ASSLBs.Herein,we report a composite SSE combining by LZC and argyrodite buffer layer(Li_(6)PS_(5)Cl,LPSC) that prevent the unfavorable interaction between LZC and Li metal.The Li/LPSC-LZC-LPSC/Li symmetric cell stably cycles for over 1000 h at 0.3 mA/cm^(2)(0.15mAh/cm^(2)) and has a high critical current density(CCD) value of 2.1 mA/cm^(2)at 25 ℃,Under high temperature(60℃) which promotes the reaction between Li and LZC,symmetric cell fabricated with composite SSE also display stable cycling performance over 1200h at 0.3 mAh/cm^(2).Especially,the Li/NCM ASSLBs fabricated with composite SSE exhibit a high initial coulombic efficiency,as well as superior cycling and rate performance.This simple and efficient strategy will be instrumental in the development of halidebased high-performance ASSLBs.
基金This work was also supported by the Core Research for Engineering Innovation KGCX2-203 of the Chinese Academy of Sciences, National Natural Science Foundation of China (No. 20272062) and the "One Hundred Talents" Fund foWen-Hua Sun.
文摘8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp_2ZrCl_2) were supportedsimultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supportedpolymerization results showed that the molecular weight of polyethylene increased while the molecular weight distributionbecame wider and the molecular chains of oligomers remaning in the final solution became shorter as compared to theoligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as theCp_2ZrCl_2 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while α-olefin selectivity increased.
基金Project(50274027) supported by the National Natural Science Foundation of China
文摘Thermodynamic studies were carried out for the vapor complex of sodium chloride with zirconium tetrachloride at 718-778 K and 0.5-2.5 kPa by using high temperature phase equilibrium-quenching experiments, taking closed Pyrex glass ampoules as the reaction containers. The results show that the sole predominant vapor complex is Na_2ZrCl_6 for the ZrCl4-NaCl system under the experimental conditions. The thermodynamic equilibrium constants and other thermodynamic functions of the reaction 2NaCl(s)+ZrCl4(g)=Na_2ZrCl_6(g) have been derived from the measurements. The results for the changes in enthalpy and entropy are △H0=(-70.1±1.5) kJ/mol and △S0=(-105.9±2.0) J/(mol·K) in the temperature range.
基金supported by the National Natural Science Foundation of China(Nos.52177214,51821005)the Department of Science and Technology of Guangdong Province(No.2017ZT07Z479)the Pico Centerat SUSTech CRF that receives support from Presidential fund and Development and Reform Commission of Shenzhen Municipality.
文摘Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability,respectively.Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal.Zr-based lithium halides with low cost and high stability possess great potential.Herein,a small amount of In^(3+)is introduced in Li_(2)ZrCl_(6) to synthesize Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6) electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm.Solid-state batteries using Li_(2.25)Zr_(0.75)In_(0.25)Cl_(6)/Li_(5.5)PS_(4.5)Cl_(1.5) bilayer solid electrolytes combined with Li-In anode and pristine LiNi_(0.7)Mn_(0.2)Co_(0.1)O_(2) cathode deliver high initial discharge capacities under different cut-off voltages.This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes,promoting their applications in solid-state batteries.
文摘Three semicarbazonyl ligands were synthesized and used to form six novel organometallic complexes with Ph2SnCl2 and Cp2ZrCl2. All these complexes were characterized by IR 1H NMR MS and elemental analysis.