Through the use of reliable AMS dating of high resolution (15-30 years) peat and the establishment of monsoon climate proxies sequence, we have been able to recognize several cold, dry events in the Tibetan Plateau du...Through the use of reliable AMS dating of high resolution (15-30 years) peat and the establishment of monsoon climate proxies sequence, we have been able to recognize several cold, dry events in the Tibetan Plateau during the Holocene. The more obvious ones occurred around 12800, 11300, 10200, 9580, 8900, 6400, 4400, 3700, 2800 and 1500 cal. aBP. These events correlate well with both ice rafting events recorded in high latitude North Atlantic Ocean sediment cores and cooling events in the low latitude SST. Spectral analysis indicates high frequency climate variation on centennial-millennial time scale during the Holocene. This further reflects Holocene climate instability and the existence of centennial-millenium scale rhythm in mid latitude areas as well.展开更多
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna...Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.展开更多
Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8....Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assi展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49725308, 40023003 and 49894170) the National "973" Project (Grant No. G199043) the Knowledge Innovation Engineering Project (Grant Nos. KZCX1-Y-05 and KZCX2-108
文摘Through the use of reliable AMS dating of high resolution (15-30 years) peat and the establishment of monsoon climate proxies sequence, we have been able to recognize several cold, dry events in the Tibetan Plateau during the Holocene. The more obvious ones occurred around 12800, 11300, 10200, 9580, 8900, 6400, 4400, 3700, 2800 and 1500 cal. aBP. These events correlate well with both ice rafting events recorded in high latitude North Atlantic Ocean sediment cores and cooling events in the low latitude SST. Spectral analysis indicates high frequency climate variation on centennial-millennial time scale during the Holocene. This further reflects Holocene climate instability and the existence of centennial-millenium scale rhythm in mid latitude areas as well.
基金financially supported by National Natural Science Foundation of China(Grant No. 51179006)China National Funds for Distinguished Young Scientists (Grant No.51125035)+2 种基金National Science Foundation for Innovative Research Group (Grant No. 51121003)the Program for New Century Excellent Talents in University (NECT-10-0235)the Fok Ying Tung Foundation (Grant No. 132009)
文摘Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.
基金supported by China Scholarship, the Chinese Academy of Sciences (KSCXI-07, KSCX2-01-09)the Ministry of Science & Technology of China (2004BA606A-05)Sichuan provincial training foundation for Science & Technology leader ,Sichuan youth foundation.
文摘Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assi