Zn_(3)V_(2)O_(8) was considered as a promising anode material for lithium-ion battery(LIB),because of its high theoretical specific capacity,environmental friendliness,and ease of availability.However,the large volume...Zn_(3)V_(2)O_(8) was considered as a promising anode material for lithium-ion battery(LIB),because of its high theoretical specific capacity,environmental friendliness,and ease of availability.However,the large volume change and low electronic conductivity of Zn_(3)V_(2)O_(8)in repeated charge/discharge cycles have severely limited its applications.To solve the above issues,hierarchical Zn_(3)V_(2)O_(8) microspheres assembled by two-dimensional(2D)nanosheets were successfully synthesized,and carbon nanotubes(CNTs)were further introduced to cross-link the Zn_(3)V_(2)O_(8) microspheres.The interconnected nature of the three-dimensional(3D)conducting network and the special hierarchical morphology were beneficial for improving the stability and conductivity of the composite,leading to the reduction of the impedance and a significant improvement of the electrochemical performance.The reversible capacity of the as-prepared composite can achieve 1049.5mAh·g^(-1)at a current density of 0.2 A·g^(-1)with a capacity retention of~81%after 100 cycles.It is suggested that morphology modulation coupled with interconnecting CNT network is an effective method to boost the electrochemical performance of the anode materials for lithium-ion batteries.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22279030)the Project of Key Laboratory of Superlight Materials and Surface Technology of Harbin Engineering UniversityHebei Key Laboratory of Dielectric and Electrolyte Functional Material,Northeastern University at Qinhuangdao(No.HKDEFM2021201)。
文摘Zn_(3)V_(2)O_(8) was considered as a promising anode material for lithium-ion battery(LIB),because of its high theoretical specific capacity,environmental friendliness,and ease of availability.However,the large volume change and low electronic conductivity of Zn_(3)V_(2)O_(8)in repeated charge/discharge cycles have severely limited its applications.To solve the above issues,hierarchical Zn_(3)V_(2)O_(8) microspheres assembled by two-dimensional(2D)nanosheets were successfully synthesized,and carbon nanotubes(CNTs)were further introduced to cross-link the Zn_(3)V_(2)O_(8) microspheres.The interconnected nature of the three-dimensional(3D)conducting network and the special hierarchical morphology were beneficial for improving the stability and conductivity of the composite,leading to the reduction of the impedance and a significant improvement of the electrochemical performance.The reversible capacity of the as-prepared composite can achieve 1049.5mAh·g^(-1)at a current density of 0.2 A·g^(-1)with a capacity retention of~81%after 100 cycles.It is suggested that morphology modulation coupled with interconnecting CNT network is an effective method to boost the electrochemical performance of the anode materials for lithium-ion batteries.