Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase ...Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase of calcina- tion temperature and prolonging calcination time. The photocatalytic activity was measured for the degradation of an aqueous Rhodamine-B(RhB) solution and gaseous formaldehyde(FAD). With the increase of calcination temperature and time, the activities increased to a maximum and then decreased. ZnWO4 photocatalyst prepared at 550℃ for I0 h showed the highest activity, which is similar to the photocatalytic activity of P25TiO2 for the degradation of gase-ous FAD. High crystallinity, large surface area, and good dispersion are responsible for the high photocatalytic per- formance of the prepared ZnWO4.展开更多
ZnWO4,as an environment-friendly and economic material,has the potential for Li ion batteries(LIB)application.In this paper,a facile method has been developed to synthesize ZnWO4supported on the reduced graphene oxide...ZnWO4,as an environment-friendly and economic material,has the potential for Li ion batteries(LIB)application.In this paper,a facile method has been developed to synthesize ZnWO4supported on the reduced graphene oxide(RGO)to improve its LIB performance.The cuboid-like ZnWO4nanocrystals are prepared by directly adding Na2WO4 powders into the graphene oxide/Zn aqueous solution followed by a hydrothermal treatment.The high-resolution TEM,XRD and XPS characterizations were employed to demonstrate structural information of the as-prepared ZnWO4/RGO hybrids carefully.Besides,we also discussed the LIB properties of the hybrids based on the detailed galvanostatic charge-discharge cycling tests.As a result,the specific capacity of the as-prepared ZnWO4/RGO hybrids reached more than 477.3 mA h g 1after 40 cycles at a current density of 100 mA g 1(only less than 159 mA g 1for bare ZnWO4).During the whole cyclic process,the coulombic efficiency steadily kept the values higher than 90%.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.20433010and20571047)Specialized Research Fundfor the Doctoral Program of Higher Education(No.20060003082).
文摘Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase of calcina- tion temperature and prolonging calcination time. The photocatalytic activity was measured for the degradation of an aqueous Rhodamine-B(RhB) solution and gaseous formaldehyde(FAD). With the increase of calcination temperature and time, the activities increased to a maximum and then decreased. ZnWO4 photocatalyst prepared at 550℃ for I0 h showed the highest activity, which is similar to the photocatalytic activity of P25TiO2 for the degradation of gase-ous FAD. High crystallinity, large surface area, and good dispersion are responsible for the high photocatalytic per- formance of the prepared ZnWO4.
基金supported by the National Basic Research Program of Chi-na(2013CB934101)the National Natural Science Foundation of China(20901075,21271045 and 51272249)the Opening Fund of State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(RERU2013001)
文摘ZnWO4,as an environment-friendly and economic material,has the potential for Li ion batteries(LIB)application.In this paper,a facile method has been developed to synthesize ZnWO4supported on the reduced graphene oxide(RGO)to improve its LIB performance.The cuboid-like ZnWO4nanocrystals are prepared by directly adding Na2WO4 powders into the graphene oxide/Zn aqueous solution followed by a hydrothermal treatment.The high-resolution TEM,XRD and XPS characterizations were employed to demonstrate structural information of the as-prepared ZnWO4/RGO hybrids carefully.Besides,we also discussed the LIB properties of the hybrids based on the detailed galvanostatic charge-discharge cycling tests.As a result,the specific capacity of the as-prepared ZnWO4/RGO hybrids reached more than 477.3 mA h g 1after 40 cycles at a current density of 100 mA g 1(only less than 159 mA g 1for bare ZnWO4).During the whole cyclic process,the coulombic efficiency steadily kept the values higher than 90%.