Summary of main observation and conclusion The crystallographic defects inevitably incur during the solution processed organic-inorganic hybrid perovskite film,especially at surface and the grain boundaries (GBs)of pe...Summary of main observation and conclusion The crystallographic defects inevitably incur during the solution processed organic-inorganic hybrid perovskite film,especially at surface and the grain boundaries (GBs)of perovskite film,which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs).Here,a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra-ammonium zinc phthalocyanine (ZnPc).The results demonstrated that a 2D-3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn-1Pbnl3n+1 perovskite together with 3D MAPbl3 perovskite was successfully constructed on the top of 3D perovskite layer.This situation realized the efficient GBs passivation,thus reducing the defects in GBs.As expected,the corresponding PSCs with modified perovskite revealed an improved cell performance.The best efficiency reached 19.6%.Especially,the significantly enhanced long-term stability of the responding PSCs against humidity and heating was remarkably achieved.Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.展开更多
The Zn(Ⅱ) phthalocyanine sensitized TiO2(ZnPc-TiO2) nanoparticles were prepared by hydrothermal method via impregnation with ZnPc.The as-prepared photocatalysts were characterized by X-ray diffractometry(XRD) and dif...The Zn(Ⅱ) phthalocyanine sensitized TiO2(ZnPc-TiO2) nanoparticles were prepared by hydrothermal method via impregnation with ZnPc.The as-prepared photocatalysts were characterized by X-ray diffractometry(XRD) and diffuse reflectance spectroscopy(DRS),and the surface photovoltage spectroscopy(SPS) and photocatalytic degradation of rhodamine B(RhB) were studied under illuminating.The experimental results indicate that TiO2 sensitized by ZnPc extends its absorption band into the visible region effectively,and the sensitized TiO2 has higher activity than TiO2(Degussa P-25) under the simulated solar light and the visible light.Based on the DRS and SPS results,the mechanism about the photogenerated carrier transfer between TiO2 and ZnPc is proposed.At a lower ZnPc content(≤0.20 μmol/g),ZnPc monomer acts as the electron donor,which provides the photoinduced electrons to the conduction band of TiO2.These photoinduced electrons can transfer to molecular oxygen(O2),leading to the formation of active species,such as superoxide/hydroxide radicals and singlet oxygen,which is beneficial to the photocatalytic reaction.While at a higher ZnPc content(>0.20 μmol/g),the formation of ZnPc dimer results in the decrease of photocatalytic activities of ZnPc-TiO2 photocatalyst.展开更多
In this paper, a significant enhancement in current efficiency of the green tandem organic light-emitting diodes(TOLEDs) is demonstrated, which is based on a buffer-modified charge generation layer(CGL) of fullerene c...In this paper, a significant enhancement in current efficiency of the green tandem organic light-emitting diodes(TOLEDs) is demonstrated, which is based on a buffer-modified charge generation layer(CGL) of fullerene carbon(C60)/zinc-phthalocyanine(ZnPc). Al and MoO3 were used as the buffer-modified layers on both sides of the bilayer C60/ZnPc, respectively. Experimental results show that the inserted Al and MoO3 layers can effectively increase the electron extraction of the CGL for obtaining the device performance enhancement. Compared with that of the green TOLEDs without buffer-modified layers in CGL(37.3 cd·A-1), the current efficiency of the green TOLEDs is increased to 54.1 cd·A-1. Further study results find that the performance can also be improved by optimizing the thickness of Al in the CGL. The maximum current efficiency and maximum luminance of the green TOLEDs achieve 63.5 cd·A-1 and 17 873 cd·m-2, respectively, when the multilayer structure of the CGL is Al(3 nm)/C60(5 nm)/ZnPc(5 nm)/MoO3(3 nm).展开更多
A kind of soluble phthalocyanine derivative (ZnPc-epoxy derivative) was synthesized, and the influence of C60 on the photoelectric properties of the derivative was studied. The results of ultraviolet-visible (UV-Vi...A kind of soluble phthalocyanine derivative (ZnPc-epoxy derivative) was synthesized, and the influence of C60 on the photoelectric properties of the derivative was studied. The results of ultraviolet-visible (UV-Vis) spectra show that the absorption of the complex is larger than that of the ZnPc-epoxy derivative at B belt. But compared with the derivative, the absorption of the complex decreased at Q belt. The fluorescence spectra show that C60 takes role as annihilation in ZnPc-epoxy derivative. Photo-current tests show that the ZnPc-epoxy derivative-C60 film exhibits increasing photoconductive property.展开更多
The formation of coordinated dimeric complexes bridged by axial ligands on surface is observed with the help of a 1,3,5-tris(10-carboxydecyloxy)benzene(TCDB) template through scanning tunneling microscopy(STM). ...The formation of coordinated dimeric complexes bridged by axial ligands on surface is observed with the help of a 1,3,5-tris(10-carboxydecyloxy)benzene(TCDB) template through scanning tunneling microscopy(STM). STM images of molecular adlayers of zinc tetraphenylporphyrin(Zn TPP), zinc phthalocyanine(Zn Pc), and their mixture are reported. Zn TPP and Zn Pc can spontaneously form highly an ordered structure with a 1:1 molar ratio, which is different from that of individual Zn Pc. The coordinated bimolecular complexes bridged with axial ligands, simply as Zn Pc–DPP–Zn TPP and Zn Pc–DPE–Zn Pc, are presented and the corresponding surface structures are compared. Zn Pc and Zn TPP can be connected by an axial ligand DPP and formed assembled structures out of surface. Two types of arrays with entirely new structure are obtained for the Zn Pc–DPE–Zn Pc complex. These bridged hybrid complexes provide an example of design of self-organized crystals on the basis of coordination through non-covalent interactions.展开更多
In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc ph...In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc phthalocyanine-fullerene(ZnPcC_(60))dyad with 6-6 and 5-6 configurations.In the former,the initially populated locally excited(LE)state of ZnPc is the lowest S1 state and thus,its subsequent charge separation is relatively slow.In contrast,in the latter,the S1 state is the LE state of C_(60)while the LE state of ZnPc is much higher in energy.There also exist several charge-transfer(CT)states between the LE states of ZnPc and C_(60).Thus,one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C_(60).These points are verified in dynamics simulations.In the first 200 fs,there is a rapid excitation energy transfer from ZnPc to C_(60),followed by an ultrafast charge separation to form a CT intermediate state.This process is mainly driven by hole transfer from C_(60)to ZnPc.The present work demonstrates that different bonding patterns(i.e.5-6 and 6-6)of the C−N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C_(60)dyads.Methodologically,it is proven that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads,organometallic molecules,quantum dots,nanoclusters,etc.展开更多
A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a cast...A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a casting method and then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses.The resulting pulsed laser operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz.At pump power of 277 mW,the maximum output power and pulse energy are achieved at 4.92 mW and 1.36 nJ,respectively.ZnPc has a high chemical and photochemical stability,and its significance for use as a potential SA in a mode-locked laser is reported in this work.展开更多
基金the National Natural Science Foundation of China (Nos.21801104,21871121,21471071 and 21431002)Fundamental Research Funds for the Central Universities (No.lzujbky-2018-k08 and lzujbky-2018-ot01).
文摘Summary of main observation and conclusion The crystallographic defects inevitably incur during the solution processed organic-inorganic hybrid perovskite film,especially at surface and the grain boundaries (GBs)of perovskite film,which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs).Here,a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra-ammonium zinc phthalocyanine (ZnPc).The results demonstrated that a 2D-3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn-1Pbnl3n+1 perovskite together with 3D MAPbl3 perovskite was successfully constructed on the top of 3D perovskite layer.This situation realized the efficient GBs passivation,thus reducing the defects in GBs.As expected,the corresponding PSCs with modified perovskite revealed an improved cell performance.The best efficiency reached 19.6%.Especially,the significantly enhanced long-term stability of the responding PSCs against humidity and heating was remarkably achieved.Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.
基金Project(20431030) supported by the National Natural Science Foundation of ChinaProject(2006RFQXS096) supported by the Foundation for Science and Technology Innovation Talents of Harbin, China+1 种基金Project(1152Z002) supported by the Key Projects of Educational Department of Heilongjiang Province, ChinaProject(LBH-Q07111) supported by Heilongjiang Postdoctoral Funds for Scientific Research Initiation
文摘The Zn(Ⅱ) phthalocyanine sensitized TiO2(ZnPc-TiO2) nanoparticles were prepared by hydrothermal method via impregnation with ZnPc.The as-prepared photocatalysts were characterized by X-ray diffractometry(XRD) and diffuse reflectance spectroscopy(DRS),and the surface photovoltage spectroscopy(SPS) and photocatalytic degradation of rhodamine B(RhB) were studied under illuminating.The experimental results indicate that TiO2 sensitized by ZnPc extends its absorption band into the visible region effectively,and the sensitized TiO2 has higher activity than TiO2(Degussa P-25) under the simulated solar light and the visible light.Based on the DRS and SPS results,the mechanism about the photogenerated carrier transfer between TiO2 and ZnPc is proposed.At a lower ZnPc content(≤0.20 μmol/g),ZnPc monomer acts as the electron donor,which provides the photoinduced electrons to the conduction band of TiO2.These photoinduced electrons can transfer to molecular oxygen(O2),leading to the formation of active species,such as superoxide/hydroxide radicals and singlet oxygen,which is beneficial to the photocatalytic reaction.While at a higher ZnPc content(>0.20 μmol/g),the formation of ZnPc dimer results in the decrease of photocatalytic activities of ZnPc-TiO2 photocatalyst.
基金supported by the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission(No.KJ1600439)the Basic and Advanced Technology Research Project of Chongqing Municipality(No.cstc2018jcyjAX0462)the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission(No.KJ1500404)
文摘In this paper, a significant enhancement in current efficiency of the green tandem organic light-emitting diodes(TOLEDs) is demonstrated, which is based on a buffer-modified charge generation layer(CGL) of fullerene carbon(C60)/zinc-phthalocyanine(ZnPc). Al and MoO3 were used as the buffer-modified layers on both sides of the bilayer C60/ZnPc, respectively. Experimental results show that the inserted Al and MoO3 layers can effectively increase the electron extraction of the CGL for obtaining the device performance enhancement. Compared with that of the green TOLEDs without buffer-modified layers in CGL(37.3 cd·A-1), the current efficiency of the green TOLEDs is increased to 54.1 cd·A-1. Further study results find that the performance can also be improved by optimizing the thickness of Al in the CGL. The maximum current efficiency and maximum luminance of the green TOLEDs achieve 63.5 cd·A-1 and 17 873 cd·m-2, respectively, when the multilayer structure of the CGL is Al(3 nm)/C60(5 nm)/ZnPc(5 nm)/MoO3(3 nm).
基金The work was supported by the National Natural Science Foundation of China (Grant No. 90206017) the Key Subject of Ministry of Science and Technology of China (Grant No. 2003BA301A21)+1 种基金the Applied Materials (AM) Foundation (Grant No. 0208) the Key Subject Construction Project (Material Science) of Shanghai Educational Committee.
文摘A kind of soluble phthalocyanine derivative (ZnPc-epoxy derivative) was synthesized, and the influence of C60 on the photoelectric properties of the derivative was studied. The results of ultraviolet-visible (UV-Vis) spectra show that the absorption of the complex is larger than that of the ZnPc-epoxy derivative at B belt. But compared with the derivative, the absorption of the complex decreased at Q belt. The fluorescence spectra show that C60 takes role as annihilation in ZnPc-epoxy derivative. Photo-current tests show that the ZnPc-epoxy derivative-C60 film exhibits increasing photoconductive property.
基金supported by the National Basic Research Program of China (No. 2013CB934200)National Basic Research Program of China (No. 2012CB933001)+1 种基金The Chinese Academy of Sciences (No. YZ201318)the National Natural Science Foundation of China (Nos. 21472029, 51173031, 91127043, 51203030, 51463002)
文摘The formation of coordinated dimeric complexes bridged by axial ligands on surface is observed with the help of a 1,3,5-tris(10-carboxydecyloxy)benzene(TCDB) template through scanning tunneling microscopy(STM). STM images of molecular adlayers of zinc tetraphenylporphyrin(Zn TPP), zinc phthalocyanine(Zn Pc), and their mixture are reported. Zn TPP and Zn Pc can spontaneously form highly an ordered structure with a 1:1 molar ratio, which is different from that of individual Zn Pc. The coordinated bimolecular complexes bridged with axial ligands, simply as Zn Pc–DPP–Zn TPP and Zn Pc–DPE–Zn Pc, are presented and the corresponding surface structures are compared. Zn Pc and Zn TPP can be connected by an axial ligand DPP and formed assembled structures out of surface. Two types of arrays with entirely new structure are obtained for the Zn Pc–DPE–Zn Pc complex. These bridged hybrid complexes provide an example of design of self-organized crystals on the basis of coordination through non-covalent interactions.
基金support from the National Natural Science Foundation of China(No.21688102,No.21590801,and No.21520102005)support from Sichuan Science and Technology Program Grant(2020YJ0161)。
文摘In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc phthalocyanine-fullerene(ZnPcC_(60))dyad with 6-6 and 5-6 configurations.In the former,the initially populated locally excited(LE)state of ZnPc is the lowest S1 state and thus,its subsequent charge separation is relatively slow.In contrast,in the latter,the S1 state is the LE state of C_(60)while the LE state of ZnPc is much higher in energy.There also exist several charge-transfer(CT)states between the LE states of ZnPc and C_(60).Thus,one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C_(60).These points are verified in dynamics simulations.In the first 200 fs,there is a rapid excitation energy transfer from ZnPc to C_(60),followed by an ultrafast charge separation to form a CT intermediate state.This process is mainly driven by hole transfer from C_(60)to ZnPc.The present work demonstrates that different bonding patterns(i.e.5-6 and 6-6)of the C−N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C_(60)dyads.Methodologically,it is proven that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads,organometallic molecules,quantum dots,nanoclusters,etc.
基金This work was supported in part by the Airlangga University(Grant No.804/UN3.15/PT/2021)the University of Malaya(Grant No.ML001-2017).
文摘A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a casting method and then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses.The resulting pulsed laser operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz.At pump power of 277 mW,the maximum output power and pulse energy are achieved at 4.92 mW and 1.36 nJ,respectively.ZnPc has a high chemical and photochemical stability,and its significance for use as a potential SA in a mode-locked laser is reported in this work.