Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated...Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated. The result showed that the introduction of Eu3~ could lead to phase transition of ZnMoO4. With the increase of Eu3-- doping amount, [3-ZnMoO4 was transformed to ct phase gradually, which led to different photoluminescence performances. The optimized doping concentration of Eu3+ was 6 mol% for the highest emission intensity at 615 nm. Its CIE chromaticity coordinates were (0.667, 0.331), which were very close to the values of standard chromaticity (0.67, 0.33) for National Television Standards Committee (NTSC) system. Therefore, Eu3+-doped ZnMoO4 is considered to be a promising red-emitting phosphor for white LED applications.展开更多
Eu-activated CaMoO_(4)phosphors were co-precipitated in an aqueous solution,and NH_(3)·H_(2)O,NH_(4)HCO_(3)and(NH_(2))_(2)CO as pre-cipitating aid agents were compared based on the morphology and particle size di...Eu-activated CaMoO_(4)phosphors were co-precipitated in an aqueous solution,and NH_(3)·H_(2)O,NH_(4)HCO_(3)and(NH_(2))_(2)CO as pre-cipitating aid agents were compared based on the morphology and particle size distribution of the phosphor samples.Sm3+as sensitizer ion was investigated on the luminescence of CaMoO_(4):Eu,and it could strengthen the 406 nm absorption of this phosphor.At last,the scheelite CaMoO_(4):Eu and wolframite ZnMoO_(4):Eu were selected to compare their host absorption.The result showed that the scheelite molybdate host exhibited stronger UV absorption than wolframite one.展开更多
文摘Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated. The result showed that the introduction of Eu3~ could lead to phase transition of ZnMoO4. With the increase of Eu3-- doping amount, [3-ZnMoO4 was transformed to ct phase gradually, which led to different photoluminescence performances. The optimized doping concentration of Eu3+ was 6 mol% for the highest emission intensity at 615 nm. Its CIE chromaticity coordinates were (0.667, 0.331), which were very close to the values of standard chromaticity (0.67, 0.33) for National Television Standards Committee (NTSC) system. Therefore, Eu3+-doped ZnMoO4 is considered to be a promising red-emitting phosphor for white LED applications.
基金Project supported by the National Natural Science Foundation of China(50372086)the Minstry of Science and Technology of China(2006AA03A133)
文摘Eu-activated CaMoO_(4)phosphors were co-precipitated in an aqueous solution,and NH_(3)·H_(2)O,NH_(4)HCO_(3)and(NH_(2))_(2)CO as pre-cipitating aid agents were compared based on the morphology and particle size distribution of the phosphor samples.Sm3+as sensitizer ion was investigated on the luminescence of CaMoO_(4):Eu,and it could strengthen the 406 nm absorption of this phosphor.At last,the scheelite CaMoO_(4):Eu and wolframite ZnMoO_(4):Eu were selected to compare their host absorption.The result showed that the scheelite molybdate host exhibited stronger UV absorption than wolframite one.