期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generating ^(1)O_(2) and Co^(IV)=O through efficient peroxymonosulfate activation by ZnCo_(2)O_(4)nanosheets for pollutant control
1
作者 Xiaoke Zhang Yangyang Zhang +6 位作者 Jiaqi Tian Yadan Guo Zhongkui Zhou Zhongyi Liu Zaiwang Zhao Bin Liu Jun Li 《Nano Research》 SCIE EI CSCD 2024年第9期8025-8035,共11页
Heterogeneous advanced oxidation processes(AOPs)based on non-radical reactive species are considered as a powerful technology for wastewater purification due to their long half-lives and high adaptation in a wide pH r... Heterogeneous advanced oxidation processes(AOPs)based on non-radical reactive species are considered as a powerful technology for wastewater purification due to their long half-lives and high adaptation in a wide pH range.Herein,we fabricate surface Co defect-rich spinel ZnCo_(2)O_(4)porous nanosheets,which can generate≡CoIV=O and ^(1)O_(2) over a wide pH range of 3.81-10.96 by the formation of amphoteric≡Zn(OH)2 in peroxymonosulfate(PMS)activation process.Density functional theory(DFT)calculations show Co defect-rich ZnCo_(2)O_(4)possesses much stronger adsorption ability and more electron transfer to PMS.Moreover,the adsorption mode changes from terminal oxygen Co-O-Co to Co-O,accelerating the polarization of adjacent oxygen,which is beneficial to the generation of≡CoIV=O and Generating ^(1)O_(2) .Co defect-rich ZnCo_(2)O_(4)porous nanosheets exhibit highly active PMS activation activity and stability in p-nitrophenol(PNP)degradation,whose toxicity of degradation intermediates is significant reduction.The Co defect-rich ZnCo_(2)O_(4)nanosheet catalyst sponge/PMS system achieved stable and efficient removal of PNP with a removal efficiency higher than 93%over 10 h.This work highlights the development of functional catalyst and provides an atomic-level understanding into non-radical PMS activation process in wastewater treatment. 展开更多
关键词 advanced oxidation processes znco_(2)o_(4)nanosheets peroxymonosulfate activation CoIV=o wastewater treatment
原文传递
Mixed matrix membrane containing metal oxide nanosheets for efficient CO_(2)separation 被引量:2
2
作者 Weifang Zhu Fu Liu +2 位作者 Minmin Gou Ruili Guo Xueqin Li 《Green Chemical Engineering》 2021年第1期132-143,共12页
The two-dimensional(2D)nanosheet zinc cobaltate(ZnCo_(2)O_(4))was added into polyether block amide(Pebax)matrix to prepare mixing matrix membrane(MMM)for separating carbon dioxide(CO_(2))/methane(CH4)gas mixture.The 2... The two-dimensional(2D)nanosheet zinc cobaltate(ZnCo_(2)O_(4))was added into polyether block amide(Pebax)matrix to prepare mixing matrix membrane(MMM)for separating carbon dioxide(CO_(2))/methane(CH4)gas mixture.The 2D porous ZnCo_(2)O_(4)nanosheets were composed of chemically interconnected metal oxide nanoparticles.The ZnCo_(2)O_(4)nanoparticles in the nanosheets constructed large-quantity pores of 11.78 nm and provided abundant transfer channels for gas molecule.Moreover,the synergistic effect of bimetallic Zn^(2+)and Co^(2+)would promote the generation of oxygen vacancies(Oδ-),which could provide more CO_(2)(Cδ+)adsorption sites,thereby increased the selectivity of the membrane.The large aspect ratio of the ultra-thin ZnCo_(2)O_(4)nanosheets showed better dispersion in the membrane.The pure gas separation performance data showed the CO_(2)permeability and CO_(2)/CH4 selectivity of Pebax/ZnCo_(2)O_(4)membrane were 139.10 Barrer and 15.38,respectively,when the filling amount was 0.5 wt%.Compared with pure Pebax membrane,the separation performance(permeability and selectivity)were increased with 165.67%and 75.57%,respectively. 展开更多
关键词 Co_(2)separation znco_(2)o_(4)nanosheets The mixed matrix membranes Synergistic effect Bimetallic oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部