Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-s...Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments.展开更多
The Zn and Fe modified /ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst (Zn-Fe-SZA) was prepared and mechanisms of deactivation and methods for regeneration of as-prepared cata...The Zn and Fe modified /ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst (Zn-Fe-SZA) was prepared and mechanisms of deactivation and methods for regeneration of as-prepared catalyst were explored with n-pentane isomerization as a probe reaction. The results indicated that the isopentane yield of the fresh Zn-Fe-SZA-F catalyst was about 57% at the beginning of the run, and declined gradually to 50% within 1500 min, then fell rapidly from 50% to 40% between 1500 and 2500 minutes. The deactivation of Zn-Fe-SZA catalyst may be caused by carbon formation on surface of the catalyst, sulfate group attenuation owing to reduction by hydrogen, removal of sulfur species and the loss of strong acid sites. It was found that the initial catalytic activity over Zn-Fe-SZA-T catalyst was 48%, which recovered by 84.3% as compared to that of fresh catalyst (57%). However, it showed a sharp decrease in isopentane yield from 48% to 29% within 1500 minutes, showing poor stability. This is associated to the loss of acidity caused by removal of sulfur species cannot be basically restored by thermal treatment. Resulfating the calcined catalyst could improve the acidity of catalyst significantly, especially strong acid sites, as compared with the calcined sample. The improved stability of the resulfated catalyst can be explained by: 1) eliminaton of carbon deposition to some extent by calcination process, 2) formation of improved acidic nature by re-sulfation, favoring isomerization on acidic sites, 3) restructuring of the acid and metal sites via the calcination-re-sulfation procedure.展开更多
In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the ba...In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the basis of atom structures analysis. The effects of hydrogen inhibitor on the current efficiency of Zn-Fe alloy electroplating and their electrochemical behaviors were studied. The results indicate that hydrogen inhibitor can increase the current efficiency of Zn-Fe alloy electroplating evidently, from 63.28% without hydrogen inhibitor up to 83.54% with a hydrogen inhibitor at a volume fraction of 2.0%, while it has a minor influence on that of pure Zn plating, which maintains at 80%. The optimum volume fraction of hydrogen inhibitor is 2.0%.展开更多
The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electroch...The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electrochemistry. The mechanism of current efficiency improvement were explained from the point of valence electron theory. The results indicate that the partial current density of Fe increases in addition of hydrogen inhibitor, which reaches the maximum of 0.14 A/dm^2 when current density is 0.2 A/din〈 Differential capacitance of electrode/electrolyte interface decreases obviously from 20.3μF/cm^2 to 7 μF/cm^2 rapidly with the concentration varying from 0 to 20 mL/L, because hydrogen inhibitor chemically adsorbs on active points of Fe electrode surface selectively. Element S in hydrogen inhibitor with negative electricity and strong capacity of offering electron shares isolated electrons with Fe. The adsorption of H atom is inhibited when adsorbing on active points of Fe electrode surface firstly, and then current efficiency of Zn-Fe alloy electroplating is improved accordingly.展开更多
通过改变工艺条件,可以从碱性溶液中获得含 Fe0.4~0.8%的 Zn-Fe合金镀层。试验表明这种镀层的耐蚀性是普通镀锌层的2倍。含 Fe 量不同的镀层其耐蚀性也不同。含 Fe 在0.4~0.8%的镀层在5%NaCl 溶液中在稳定电位条件下处于钝化区,而且...通过改变工艺条件,可以从碱性溶液中获得含 Fe0.4~0.8%的 Zn-Fe合金镀层。试验表明这种镀层的耐蚀性是普通镀锌层的2倍。含 Fe 量不同的镀层其耐蚀性也不同。含 Fe 在0.4~0.8%的镀层在5%NaCl 溶液中在稳定电位条件下处于钝化区,而且镀层的极化电阻比较大,是镀锌层的2倍以上,而镀锌层在同样溶液中处于活化溶解区,有很大的溶解电流,而且极化电阻较小。腐蚀后形貌观察也表明 Zn-Fe 合金镀层与镀锌层的特征不同,呈花球状形貌。正是由于上述差异决定了 Zn-Fe 合金镀层的耐蚀性是优良的。展开更多
文摘Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments.
文摘The Zn and Fe modified /ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst (Zn-Fe-SZA) was prepared and mechanisms of deactivation and methods for regeneration of as-prepared catalyst were explored with n-pentane isomerization as a probe reaction. The results indicated that the isopentane yield of the fresh Zn-Fe-SZA-F catalyst was about 57% at the beginning of the run, and declined gradually to 50% within 1500 min, then fell rapidly from 50% to 40% between 1500 and 2500 minutes. The deactivation of Zn-Fe-SZA catalyst may be caused by carbon formation on surface of the catalyst, sulfate group attenuation owing to reduction by hydrogen, removal of sulfur species and the loss of strong acid sites. It was found that the initial catalytic activity over Zn-Fe-SZA-T catalyst was 48%, which recovered by 84.3% as compared to that of fresh catalyst (57%). However, it showed a sharp decrease in isopentane yield from 48% to 29% within 1500 minutes, showing poor stability. This is associated to the loss of acidity caused by removal of sulfur species cannot be basically restored by thermal treatment. Resulfating the calcined catalyst could improve the acidity of catalyst significantly, especially strong acid sites, as compared with the calcined sample. The improved stability of the resulfated catalyst can be explained by: 1) eliminaton of carbon deposition to some extent by calcination process, 2) formation of improved acidic nature by re-sulfation, favoring isomerization on acidic sites, 3) restructuring of the acid and metal sites via the calcination-re-sulfation procedure.
基金Project(50274073) supported by the National Natural Science Foundation of China
文摘In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the basis of atom structures analysis. The effects of hydrogen inhibitor on the current efficiency of Zn-Fe alloy electroplating and their electrochemical behaviors were studied. The results indicate that hydrogen inhibitor can increase the current efficiency of Zn-Fe alloy electroplating evidently, from 63.28% without hydrogen inhibitor up to 83.54% with a hydrogen inhibitor at a volume fraction of 2.0%, while it has a minor influence on that of pure Zn plating, which maintains at 80%. The optimum volume fraction of hydrogen inhibitor is 2.0%.
基金Projects(50274073) supported by the National Natural Science Foundation of China
文摘The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electrochemistry. The mechanism of current efficiency improvement were explained from the point of valence electron theory. The results indicate that the partial current density of Fe increases in addition of hydrogen inhibitor, which reaches the maximum of 0.14 A/dm^2 when current density is 0.2 A/din〈 Differential capacitance of electrode/electrolyte interface decreases obviously from 20.3μF/cm^2 to 7 μF/cm^2 rapidly with the concentration varying from 0 to 20 mL/L, because hydrogen inhibitor chemically adsorbs on active points of Fe electrode surface selectively. Element S in hydrogen inhibitor with negative electricity and strong capacity of offering electron shares isolated electrons with Fe. The adsorption of H atom is inhibited when adsorbing on active points of Fe electrode surface firstly, and then current efficiency of Zn-Fe alloy electroplating is improved accordingly.