The microstructures of the oxide layers formed on near (0001) plane of Zircaloy-4 were investigated by autoclave tests at 360 ℃ in lithiated aqueous solution. Oxygen-rich regions with hcp structure were observed at...The microstructures of the oxide layers formed on near (0001) plane of Zircaloy-4 were investigated by autoclave tests at 360 ℃ in lithiated aqueous solution. Oxygen-rich regions with hcp structure were observed at the undulating O/M interface, and the inner surface morphology of the oxide layers formed on (0001) was only concave- convex. Monoclinic, tetragonal and cubic phases and a kind of zirconium sub-oxide with bcc structure were detected in the oxide layer near the metal matrix. This zirconium sub-oxide layer had a coherent relationship with a-Zr matrix, and the growth direction of the zirconium sub-oxide layer was nearly parallel to the [0001] direction of a-Zr regardless of the orientation of metal matrix. The orientations scattering of columnar grains formed on near (0001) plane differ from that formed on near (1010) plane.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51171102 and 51271104)
文摘The microstructures of the oxide layers formed on near (0001) plane of Zircaloy-4 were investigated by autoclave tests at 360 ℃ in lithiated aqueous solution. Oxygen-rich regions with hcp structure were observed at the undulating O/M interface, and the inner surface morphology of the oxide layers formed on (0001) was only concave- convex. Monoclinic, tetragonal and cubic phases and a kind of zirconium sub-oxide with bcc structure were detected in the oxide layer near the metal matrix. This zirconium sub-oxide layer had a coherent relationship with a-Zr matrix, and the growth direction of the zirconium sub-oxide layer was nearly parallel to the [0001] direction of a-Zr regardless of the orientation of metal matrix. The orientations scattering of columnar grains formed on near (0001) plane differ from that formed on near (1010) plane.