Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via pla...Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products/lr of the composite film were increased by nearly one order of magnitude from 6.96 × 10^-7 to 5.08 × 10^-6 cm2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.展开更多
The system of ZnPc-C60 ln speclal mixed organic solvents has been studled by UVVis, fluorescence and laser Raman spectra. The results prove the existence of a chargetransfer complex (CTC) by the lnteractlon between Zn...The system of ZnPc-C60 ln speclal mixed organic solvents has been studled by UVVis, fluorescence and laser Raman spectra. The results prove the existence of a chargetransfer complex (CTC) by the lnteractlon between ZnPc and C60 The molar ratio of ZnPc/C60 in CTC is 2: 1. The formation equilibrium constant(K) was determined at 25 C. Mea-surements of photovoltaic effect show that ZnPc-C60 CTC leads to a rernarkable enhancementof photosensitivity comparing to that of ZnPc.展开更多
A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to o...A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to obtain a thermosensitive polymer (Zn-TDTAPc-g-PNIPAAm). Compared with zinc tetraaminophthalocyanine (Zn-TAPc), Zn-TDTAPc-g-PNIPAAm exhibits excellent solubility in water and in most organic solvents. Furthermore, it has a special thermosensitive property in water and the lower critical solution temperature (LCST) is 34.1°C. It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAAm present high photoactivity evidenced by the experiment of photocatalytic degradation of 1, 3-diphenylisobenzofuran (DPBF) in the presence of Zn-TDTAPc-g-PNIPAAm. These properties suggest that it can be used potentially in photodynamic therapy (PDT).展开更多
基金supported by the State Key Development Program for Basic Research of China(No.2006CB202604)the National Natural Science Foundation of China (Nos.60576036,50773085,60736034)the National High Technology Research and Development Program of China (No.2006AA05Z405)
文摘Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products/lr of the composite film were increased by nearly one order of magnitude from 6.96 × 10^-7 to 5.08 × 10^-6 cm2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.
文摘The system of ZnPc-C60 ln speclal mixed organic solvents has been studled by UVVis, fluorescence and laser Raman spectra. The results prove the existence of a chargetransfer complex (CTC) by the lnteractlon between ZnPc and C60 The molar ratio of ZnPc/C60 in CTC is 2: 1. The formation equilibrium constant(K) was determined at 25 C. Mea-surements of photovoltaic effect show that ZnPc-C60 CTC leads to a rernarkable enhancementof photosensitivity comparing to that of ZnPc.
基金the National Natural Science Foundation of China(Grant No.20574061)the Program for New Century Excellent Talents in University(Grant No.040559)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.0654)
文摘A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to obtain a thermosensitive polymer (Zn-TDTAPc-g-PNIPAAm). Compared with zinc tetraaminophthalocyanine (Zn-TAPc), Zn-TDTAPc-g-PNIPAAm exhibits excellent solubility in water and in most organic solvents. Furthermore, it has a special thermosensitive property in water and the lower critical solution temperature (LCST) is 34.1°C. It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAAm present high photoactivity evidenced by the experiment of photocatalytic degradation of 1, 3-diphenylisobenzofuran (DPBF) in the presence of Zn-TDTAPc-g-PNIPAAm. These properties suggest that it can be used potentially in photodynamic therapy (PDT).