Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine.Here,we have synthesized zinc oxide(ZnO)nanorods using zinc acetate and hexamethylenetetram...Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine.Here,we have synthesized zinc oxide(ZnO)nanorods using zinc acetate and hexamethylenetetramine as precursors followed by characterizing using X-ray diffraction,fourier transform infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The growth of synthesized zinc oxide nanorods was found to be very close to its hexagonal nature,which is confirmed by X-ray diffraction.The nanorod was grown perpendicular to the long-axis and grew along the[001]direction,which is the nature of ZnO growth.The morphology of synthesized ZnO nanorods from the individual crystalline nucleus was confirmed by scanning and transmission electron microscopy.The length of the nanorod was estimated to be around 21 nm in diameter and 50 nm in length.Our toxicology studies showed that synthesized ZnO nanorods exposure on hela cells has no significant induction of oxidative stress or cell death even in higher concentration(10μg/ml).The results suggest that ZnO nanorods might be a safer nanomaterial for biological applications.展开更多
This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) a...This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.展开更多
In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical...In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.展开更多
基金supported by NASA funding NNX08BA47ANCC-1-02038+1 种基金NIH-1P20MD001822-1NSF(RISE)HRD-0734846
文摘Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine.Here,we have synthesized zinc oxide(ZnO)nanorods using zinc acetate and hexamethylenetetramine as precursors followed by characterizing using X-ray diffraction,fourier transform infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The growth of synthesized zinc oxide nanorods was found to be very close to its hexagonal nature,which is confirmed by X-ray diffraction.The nanorod was grown perpendicular to the long-axis and grew along the[001]direction,which is the nature of ZnO growth.The morphology of synthesized ZnO nanorods from the individual crystalline nucleus was confirmed by scanning and transmission electron microscopy.The length of the nanorod was estimated to be around 21 nm in diameter and 50 nm in length.Our toxicology studies showed that synthesized ZnO nanorods exposure on hela cells has no significant induction of oxidative stress or cell death even in higher concentration(10μg/ml).The results suggest that ZnO nanorods might be a safer nanomaterial for biological applications.
文摘This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2· 6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.
文摘In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.