The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental mar...The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental margin of the South China Sea (SCS) underwent continental rifting, breakup, seafloor spreading and thermal subsidence processes, and the Cenozoic activities of YJF is one part of this series of complex processes. Two long NW-trending multichannel seismic profiles located on both sides of the YJF extending from the continental shelf to Continent-Ocean Boundary (COB) were used to study the tectonic and sedimentary characteristics of western ZRMB. Using the 2D-Move software and back-stripping method, we constructed the balance cross-section model and calculated the fault activity rate. Through the comprehensive consideration of tectonic position, tectonic evolution history, featured structure, and stress analysis, we deduced the activity history of the YJF in Cenozoic. The results showed that the YJF can be divided into two segments by the central uplift belt. From 65 Ma to 32 Ma, the YJF was in sinistral motion as a whole, inherited the preexisting sinistral motion of Mesozoic YJF, in which, the southern part of YJF was mainly in extension activity, controlling the formation and evolution of Yunkai Low Uplift, coupled with slight sinistral motion. From 32 Ma to 23.8 Ma, the sinistral motion in northern part of YJF continued, while the sinistral motion in southern part began to stop or shifted to a slightly dextral motion. After 23.8 Ma, the dextral motion in southern part of YJF continued, while the sinistral motion in northern part of YJF gradually stopped, or shifted to the slightly dextral motion. The shift of the YJF strike-slip direction may be related to the magmatic underplating in continent-ocean transition, southeastern ZRMB. According to the analysis of tectonic activity intensity and rift sedimentary structure, the activities of YJF in Cenozoic played a regulating role in the rift extension pro展开更多
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontolog...The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transitio展开更多
基金The National Natural Science Foundation of China under contract Nos 41776072,41476039,41674092 and 41676045the Geotectonic Evolution of China and Compilation of International Asian Geotectonic Map under contract No.DD20190364the Marine Basic Geological Survey Project under contract No.DD20190627
文摘The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental margin of the South China Sea (SCS) underwent continental rifting, breakup, seafloor spreading and thermal subsidence processes, and the Cenozoic activities of YJF is one part of this series of complex processes. Two long NW-trending multichannel seismic profiles located on both sides of the YJF extending from the continental shelf to Continent-Ocean Boundary (COB) were used to study the tectonic and sedimentary characteristics of western ZRMB. Using the 2D-Move software and back-stripping method, we constructed the balance cross-section model and calculated the fault activity rate. Through the comprehensive consideration of tectonic position, tectonic evolution history, featured structure, and stress analysis, we deduced the activity history of the YJF in Cenozoic. The results showed that the YJF can be divided into two segments by the central uplift belt. From 65 Ma to 32 Ma, the YJF was in sinistral motion as a whole, inherited the preexisting sinistral motion of Mesozoic YJF, in which, the southern part of YJF was mainly in extension activity, controlling the formation and evolution of Yunkai Low Uplift, coupled with slight sinistral motion. From 32 Ma to 23.8 Ma, the sinistral motion in northern part of YJF continued, while the sinistral motion in southern part began to stop or shifted to a slightly dextral motion. After 23.8 Ma, the dextral motion in southern part of YJF continued, while the sinistral motion in northern part of YJF gradually stopped, or shifted to the slightly dextral motion. The shift of the YJF strike-slip direction may be related to the magmatic underplating in continent-ocean transition, southeastern ZRMB. According to the analysis of tectonic activity intensity and rift sedimentary structure, the activities of YJF in Cenozoic played a regulating role in the rift extension pro
基金The National Natural Science Foundation of China under contract Nos 91328201,91528301 and 41130422
文摘The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transitio