Mass attenuation coefficients,effective atomic numbers,and electron densities for semiconductor and scintillation detectors have been calculated in the photon energy range 1 keV-100 GeV.These interaction parameters ha...Mass attenuation coefficients,effective atomic numbers,and electron densities for semiconductor and scintillation detectors have been calculated in the photon energy range 1 keV-100 GeV.These interaction parameters have been found to vary with detector composition and the photon energy.The variation in the parameters with energy is shown graphically for all the partial photon interaction processes.The effective atomic numbers of the detector were compared with the ZXCOM program,and the results were found to be comparable.Efficiencies of semiconductor and scintillation detectors are presented in terms of effective atomic numbers.The study should be useful for comparing the detector performance in terms of gamma spectroscopy,radiation sensitivity,radiation measurement,and radiation damage.The results of the present investigation should stimulate research work for gamma spectroscopy and radiation measuring materials.展开更多
文摘Mass attenuation coefficients,effective atomic numbers,and electron densities for semiconductor and scintillation detectors have been calculated in the photon energy range 1 keV-100 GeV.These interaction parameters have been found to vary with detector composition and the photon energy.The variation in the parameters with energy is shown graphically for all the partial photon interaction processes.The effective atomic numbers of the detector were compared with the ZXCOM program,and the results were found to be comparable.Efficiencies of semiconductor and scintillation detectors are presented in terms of effective atomic numbers.The study should be useful for comparing the detector performance in terms of gamma spectroscopy,radiation sensitivity,radiation measurement,and radiation damage.The results of the present investigation should stimulate research work for gamma spectroscopy and radiation measuring materials.