We have calculated the Zeeman-fine energies of atomic Lithium (Li) by using the varying effective Landé g-factor method. We take the principle quantum number in the range;(2 ≤n ≤10 ). For this range we find 26 ...We have calculated the Zeeman-fine energies of atomic Lithium (Li) by using the varying effective Landé g-factor method. We take the principle quantum number in the range;(2 ≤n ≤10 ). For this range we find 26 different energy values and 325 wavelengths some of which are the same. The Doppler shift is found to be Δλ=±0.004λ. The Doppler shift-corrected wavelengths are in perfect agreement with the observed (NIST) values for atomic Li.展开更多
文摘We have calculated the Zeeman-fine energies of atomic Lithium (Li) by using the varying effective Landé g-factor method. We take the principle quantum number in the range;(2 ≤n ≤10 ). For this range we find 26 different energy values and 325 wavelengths some of which are the same. The Doppler shift is found to be Δλ=±0.004λ. The Doppler shift-corrected wavelengths are in perfect agreement with the observed (NIST) values for atomic Li.