H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalyti...H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.展开更多
ZSM-5 zeolite with a hexagonal cubic morphology was synthesized by a hydrothermal method using Triton X-100, a nonionic surfactant. The samples prepared with and without the surfactant were characterized by X-ray diff...ZSM-5 zeolite with a hexagonal cubic morphology was synthesized by a hydrothermal method using Triton X-100, a nonionic surfactant. The samples prepared with and without the surfactant were characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy, N2 adsorption, high resolution transmission electron microscopy(TEM), high resolution scanning electron mi-croscopy, energy dispersive X-ray analysis, and NH3 temperature-programmed desorption. The XRD patterns confirmed the formation of a pure ZSM-5 crystalline phase without secondary phases. TEM images revealed that the hexagonal cubes were made of peanut-shaped nanoparticles with voids.The catalytic activity of the zeolite samples was evaluated using the selective oxidation of benzyl alcohol with tertiary-butyl hydrogen peroxide as the oxidant at 90 °C. The surfactant-assisted prep-aration yielded a zeolite that gave a higher conversion than the one prepared in the absence of the surfactant. The catalyst was retrieved and reused four times without significant loss in activity and selectivity.展开更多
文摘H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.
文摘ZSM-5 zeolite with a hexagonal cubic morphology was synthesized by a hydrothermal method using Triton X-100, a nonionic surfactant. The samples prepared with and without the surfactant were characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy, N2 adsorption, high resolution transmission electron microscopy(TEM), high resolution scanning electron mi-croscopy, energy dispersive X-ray analysis, and NH3 temperature-programmed desorption. The XRD patterns confirmed the formation of a pure ZSM-5 crystalline phase without secondary phases. TEM images revealed that the hexagonal cubes were made of peanut-shaped nanoparticles with voids.The catalytic activity of the zeolite samples was evaluated using the selective oxidation of benzyl alcohol with tertiary-butyl hydrogen peroxide as the oxidant at 90 °C. The surfactant-assisted prep-aration yielded a zeolite that gave a higher conversion than the one prepared in the absence of the surfactant. The catalyst was retrieved and reused four times without significant loss in activity and selectivity.