期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Center, Limit Cycles and Isochronous Center of a Z_4-equivariant Quintic System
1
作者 Chao Xiong DU Hei Long MI Yi Rong LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第6期1183-1196,共14页
In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By com... In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By computing the Liapunov constants and periodic constants carefully, we show that for a certain Z4-equivariant quintic systems, there are four fine focuses of five order and five limit cycles can bifurcate from each, we also find conditions of center and isochronous center for this system. The process of proof is algebraic and symbolic by using common computer algebra soft such as Mathematica, the expressions after being simplified in this paper are simple relatively. Moreover, what is worth mentioning is that the result of 20 small limit cycles bifurcating from several fine focuses is good for Z4-equivariant quintic system and the results where multiple singular points become isochronous centers at the same time are less in published references. 展开更多
关键词 Z4-equivariant focal value CENTER limit cycles isochronous center
原文传递
Z_q可逆等变平面系统的一般形式及极限环分支(英文)
2
作者 韩茂安 孙宪波 《上海师范大学学报(自然科学版)》 2011年第1期1-14,共14页
研究平面多项式系统极限环的个数是著名的希尔伯特第16问题的重要部分,由于这一问题十分困难,人们不断研究一些具有某种对称性的系统,例如,关于Zq等变平面系统的一般形式及其极限环的个数已有很多研究.研究了Zq可逆等变平面系统.首先通... 研究平面多项式系统极限环的个数是著名的希尔伯特第16问题的重要部分,由于这一问题十分困难,人们不断研究一些具有某种对称性的系统,例如,关于Zq等变平面系统的一般形式及其极限环的个数已有很多研究.研究了Zq可逆等变平面系统.首先通过变换把实系统化为与之等价的复系统,研究系统在复平面下具有可逆等变的性质,给出了所有Zq可逆等变平面系统的一般形式,并作为推论具体给出所有不高于六次的平面多项式系统具有Zq(q=2,4,6,8.)可逆等变性质的具体形式.这一具体形式简洁明了,易于使用.作为应用特别研究了一类五次Z4可逆等变哈密顿系统的Z4可逆等变七次多项式扰动系统(称之为Z4可逆等变近哈密顿系统),利用Melnikov函数的展开式和Hopf分支方法,得到这一Z4可逆等变近哈密顿系统至少能从中心分支出24个小极限环,并给出了其极限环的分布.最后让七次Z4可逆等变扰动项中某些参数为零的情况下使之成为五次Z4可逆等变扰动多项式,研究所得Z4可逆等变五次近哈密顿系统,发现在五次Z4可逆等变多项式的扰动下,系统可分支出8个小极限环,这8个小极限环可形成2种不同的极限环分布. 展开更多
关键词 极限环 近哈密顿系统 Z4可逆等变 HOPF分支
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部