针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图...针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.展开更多
针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提...针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(Receptive Field Block)模型来增强特征提取网络,进而增大感受野;引入通道注意力机制SE(Squeeze-and-Excitation)模块,过滤筛选出高质量信息,使整个网络模型对特征提取更加高效。实验结果表明,在PASCAL VOC 2007数据集上,基于YOLOv4的轻量化混合神经网络模型大小仅占20.6 MB,很大程度上降低了原YOLOv4模型参数量,mAP(mean Average Precision)达到82.51%,帧处理速率为29.7 frame/s。,有较好的检测效果和较强的鲁棒性。展开更多
针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替...针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替换一般卷积操作,使得模型的参数量大幅度降低进而提高模型的检测速度,同时也带来了检测精度的降低;然后在网络结构中嵌入空间金字塔池化结构实现局部特征与全局特征的融合、引入距离交并比(distance intersection over union,DIoU)损失函数优化交并比(intersection over union,IoU)损失函数以及使用Mish激活函数优化Leaky ReLU激活函数来提高模型的检测精度。本文采用自制的电容器外观缺陷数据集进行实验,轻量化MQYOLOv3算法的平均精度均值(mean average precision,mAP)为87.96%,较优化前降低了1.16%,检测速度从1.5 FPS提升到7.7 FPS。实验表明,本文设计的轻量化MQYOLOv3算法在保证检测精度的同时,提高了检测速度。展开更多
针对电力巡线无人机检测绝缘子缺陷,具有缺陷绝缘子样本数据不均衡、采集难度大等问题,提出一种基于YOLOV5(you only look once V5)算法的绝缘子异常检测模型。首先借助YOLOV5目标检测算法定位绝缘子位置,再把绝缘子图像输入到残差网络...针对电力巡线无人机检测绝缘子缺陷,具有缺陷绝缘子样本数据不均衡、采集难度大等问题,提出一种基于YOLOV5(you only look once V5)算法的绝缘子异常检测模型。首先借助YOLOV5目标检测算法定位绝缘子位置,再把绝缘子图像输入到残差网络提取多层金字塔特征,然后通过K邻近值算法判断特征层像素是否为离群点,由此可判断绝缘子是否存在缺陷。所提方法无须负样本绝缘子图像,仅通过正样本即可训练网络;与常用方法相比,所提算法的准确率和召回率均为最高,表明所提方法泛化性和稳定性较好。展开更多
在工业生产中,安全帽对人体头部提供了较好的安全保障。在现场环境中,检验施工人员是否佩戴安全帽主要依靠人工检查,因而效率非常低。为了解决施工现场安全帽检测识别难题,提出一种基于深度级联网络模型的安全帽检测方法。首先通过You O...在工业生产中,安全帽对人体头部提供了较好的安全保障。在现场环境中,检验施工人员是否佩戴安全帽主要依靠人工检查,因而效率非常低。为了解决施工现场安全帽检测识别难题,提出一种基于深度级联网络模型的安全帽检测方法。首先通过You Only Look Once version 4(YOLOv4)检测网络对施工人员进行检测;然后运用注意力机制残差分类网络对人员ROI区域进行分类判断,识别其是否佩戴安全帽。该方法在Ubuntu18.04系统和Pytorch深度学习框架的实验环境中进行,在自主制作工业场景安全帽数据集中进行训练和测试实验。实验结果表明,基于深度级联网络的安全帽识别模型与YOLOv4算法相比,准确率提高了2个百分点,有效提升施工人员安全帽检测效果。展开更多
在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征...在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征融合,提出实时高效的火焰检测方法.为了缓解正负样本不均衡问题,并充分利用困难样本的信息,引入焦点损失函数,同时结合火焰静态特征和动态特征,设计多特征融合方法,达到剔除误报火焰的目的.针对国内外缺乏火焰数据集的问题,构建大规模、高质量的十万量级火焰数据集(http://www.yongxu.org/data bases.html).实验表明,文中方法在准确率、速度、精度和泛化能力等方面均有明显提升,同时降低误报率.展开更多
为实现牵引变电所视频图像的多目标识别,为牵引变电所的远程智能巡检提供技术支持。基于迁移学习的理论研究,利用SSD(Single Shot Multibox Detector)和YOLOv2(You Only Look Once v2)模型,实现牵引变电所视频图像中高压开关柜的仪表、...为实现牵引变电所视频图像的多目标识别,为牵引变电所的远程智能巡检提供技术支持。基于迁移学习的理论研究,利用SSD(Single Shot Multibox Detector)和YOLOv2(You Only Look Once v2)模型,实现牵引变电所视频图像中高压开关柜的仪表、分合指示灯状态以及隔离开关的分合状态的自动识别。利用TensorFlow平台实现的多目标识别方法识别速度快而且鲁棒性好。展开更多
为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提...为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提算法模型参数量显著增加。进一步对Yolov4的主干特征提取网络和多尺度输出进行调整,提出轻量化的Yolov4算法。仿真实验表明,此算法能够快速有效检测交通标志,具有实时性和适用性。展开更多
随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征...随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征提取网络为结构可重参网络,然后借助开源数据集训练多分支YOLOV5模型,再对多分支网络重参化得到单路网络模型,最后把Pytorch模型转化为ONNX模型,完成在无人机嵌入式端推理部署。实验表明:重参化YOLOV5模型推理速度提高3倍左右,检出率增加0.03%,召回率增加0.02%,mAP0.5增加1.22。展开更多
文摘针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.
文摘针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(Receptive Field Block)模型来增强特征提取网络,进而增大感受野;引入通道注意力机制SE(Squeeze-and-Excitation)模块,过滤筛选出高质量信息,使整个网络模型对特征提取更加高效。实验结果表明,在PASCAL VOC 2007数据集上,基于YOLOv4的轻量化混合神经网络模型大小仅占20.6 MB,很大程度上降低了原YOLOv4模型参数量,mAP(mean Average Precision)达到82.51%,帧处理速率为29.7 frame/s。,有较好的检测效果和较强的鲁棒性。
文摘针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题,提出了基于YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模块,通过利用深度可分离式卷积替换一般卷积操作,使得模型的参数量大幅度降低进而提高模型的检测速度,同时也带来了检测精度的降低;然后在网络结构中嵌入空间金字塔池化结构实现局部特征与全局特征的融合、引入距离交并比(distance intersection over union,DIoU)损失函数优化交并比(intersection over union,IoU)损失函数以及使用Mish激活函数优化Leaky ReLU激活函数来提高模型的检测精度。本文采用自制的电容器外观缺陷数据集进行实验,轻量化MQYOLOv3算法的平均精度均值(mean average precision,mAP)为87.96%,较优化前降低了1.16%,检测速度从1.5 FPS提升到7.7 FPS。实验表明,本文设计的轻量化MQYOLOv3算法在保证检测精度的同时,提高了检测速度。
文摘针对电力巡线无人机检测绝缘子缺陷,具有缺陷绝缘子样本数据不均衡、采集难度大等问题,提出一种基于YOLOV5(you only look once V5)算法的绝缘子异常检测模型。首先借助YOLOV5目标检测算法定位绝缘子位置,再把绝缘子图像输入到残差网络提取多层金字塔特征,然后通过K邻近值算法判断特征层像素是否为离群点,由此可判断绝缘子是否存在缺陷。所提方法无须负样本绝缘子图像,仅通过正样本即可训练网络;与常用方法相比,所提算法的准确率和召回率均为最高,表明所提方法泛化性和稳定性较好。
文摘在工业生产中,安全帽对人体头部提供了较好的安全保障。在现场环境中,检验施工人员是否佩戴安全帽主要依靠人工检查,因而效率非常低。为了解决施工现场安全帽检测识别难题,提出一种基于深度级联网络模型的安全帽检测方法。首先通过You Only Look Once version 4(YOLOv4)检测网络对施工人员进行检测;然后运用注意力机制残差分类网络对人员ROI区域进行分类判断,识别其是否佩戴安全帽。该方法在Ubuntu18.04系统和Pytorch深度学习框架的实验环境中进行,在自主制作工业场景安全帽数据集中进行训练和测试实验。实验结果表明,基于深度级联网络的安全帽识别模型与YOLOv4算法相比,准确率提高了2个百分点,有效提升施工人员安全帽检测效果。
文摘为实现牵引变电所视频图像的多目标识别,为牵引变电所的远程智能巡检提供技术支持。基于迁移学习的理论研究,利用SSD(Single Shot Multibox Detector)和YOLOv2(You Only Look Once v2)模型,实现牵引变电所视频图像中高压开关柜的仪表、分合指示灯状态以及隔离开关的分合状态的自动识别。利用TensorFlow平台实现的多目标识别方法识别速度快而且鲁棒性好。
文摘为了提高交通标志识别的速度和精度,提出了一种采用Yolov4(You only look once version4)深度学习框架的交通标志识别方法,并将该方法与SSD(single shot multi box detector)和Yolov3(You only look once version 3)算法进行对比,所提算法模型参数量显著增加。进一步对Yolov4的主干特征提取网络和多尺度输出进行调整,提出轻量化的Yolov4算法。仿真实验表明,此算法能够快速有效检测交通标志,具有实时性和适用性。
文摘随着基于深度学习目标检测模型日渐成熟,将目标检测模型部署到航拍无人机上已成为重要研究方向,针对无人机机载推理设备算力和内存有限,提出一种结构重参化的YOLOV5(you only look once V5)航拍目标检测算法。首先替换YOLOV5模型的特征提取网络为结构可重参网络,然后借助开源数据集训练多分支YOLOV5模型,再对多分支网络重参化得到单路网络模型,最后把Pytorch模型转化为ONNX模型,完成在无人机嵌入式端推理部署。实验表明:重参化YOLOV5模型推理速度提高3倍左右,检出率增加0.03%,召回率增加0.02%,mAP0.5增加1.22。