On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of e...On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.展开更多
基金sponsored by the Yunnan Youth Seismology Science Fund Project(2018k08)the National Natural Science Foundation of China(41574059,41474048)the Science and Technology Special Fund,Yunnan Earthquake Agency(ZX2015-01,2018ZX04)
文摘On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.