期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
改进Yolov7-tiny的钢材表面缺陷检测算法 被引量:22
1
作者 齐向明 董旭 《计算机工程与应用》 CSCD 北大核心 2023年第12期176-183,共8页
为提高钢材表面缺陷小目标检测效率,提出一种改进Yolov7-tiny的钢材表面缺陷检测算法。将特征提取网络的激活函数更换为SiLU,提高特征提取能力;把特征融合网络的张量拼接操作与加权双向特征金字塔BiFPN结合,再把上采样部分的最邻近插值... 为提高钢材表面缺陷小目标检测效率,提出一种改进Yolov7-tiny的钢材表面缺陷检测算法。将特征提取网络的激活函数更换为SiLU,提高特征提取能力;把特征融合网络的张量拼接操作与加权双向特征金字塔BiFPN结合,再把上采样部分的最邻近插值替换为轻量级算子CARAFE,提升特征融合能力;最后在输出端引入多头自注意力机制MHSA和SPD卷积构建块,提升输出端对钢材表面缺陷小目标的检测性能。在NEU-DET数据集上做消融和对比实验,改进算法与原Yolov7-tiny算法比较,mAP提升11.7个百分点,Precision提升3.3个百分点,FPS值达到192,结果表明改进算法能有效提升钢材表面缺陷小目标检测效率;在VOC2012数据集上做通用性对比实验,结果表明改进算法具有通用性。 展开更多
关键词 钢材表面 缺陷检测 yolov7-tiny SiLU BiFPN CARAFE MHSA SPD
下载PDF
改进YOLOv7-tiny的目标检测轻量化模型 被引量:13
2
作者 刘浩翰 樊一鸣 +1 位作者 贺怀清 惠康华 《计算机工程与应用》 CSCD 北大核心 2023年第14期166-175,共10页
当前目标检测算法参数量大、计算复杂度高,难以部署在计算资源有限的边缘终端设备上,为此,提出一种改进的YOLOv7-tiny模型。引入ShuffleNet v1网络,改进后作为新的特征提取网络,增强对图像特征的提取,降低计算复杂度,获取更多丰富的语... 当前目标检测算法参数量大、计算复杂度高,难以部署在计算资源有限的边缘终端设备上,为此,提出一种改进的YOLOv7-tiny模型。引入ShuffleNet v1网络,改进后作为新的特征提取网络,增强对图像特征的提取,降低计算复杂度,获取更多丰富的语义信息,进一步提升检测精度;引入GSConv(鬼影混洗卷积)模块改进网络的Neck层,在降低参数量和计算量前提下,提升检测效果;采用Mish激活函数,增加非线性表达,提高模型的泛化能力。实验结果表明,改进后的模型与原模型相比,精度提高了3.3%,参数量和计算量分别下降了4.8%和13.7%,模型规模降低了8.7%。改进后的YOLOv7-tiny在保持较高的精度下,降低了模型的参数量和计算量,进一步提升了检测效果,为在边缘终端设备部署提供了可行性。 展开更多
关键词 目标检测 yolov7-tiny ShuffleNet v1 轻量化 Mish激活函数 GSConv模块
下载PDF
改进YOLOv7-tiny的安全帽实时检测算法 被引量:5
3
作者 赵敏 杨国亮 +1 位作者 王吉祥 龚志鹏 《无线电工程》 北大核心 2023年第8期1741-1749,共9页
针对当前施工现场人工监管作业人员安全帽佩戴费时费力且实时性较差等问题,提出了一种改进YOLOv7-tiny的安全帽实时检测算法。引入EPSANet Block金字塔拆分注意力模块,捕捉细节信息,使模型更加聚焦训练安全帽相关目标特征。设计参数量... 针对当前施工现场人工监管作业人员安全帽佩戴费时费力且实时性较差等问题,提出了一种改进YOLOv7-tiny的安全帽实时检测算法。引入EPSANet Block金字塔拆分注意力模块,捕捉细节信息,使模型更加聚焦训练安全帽相关目标特征。设计参数量更少的Tiny-BiFPN结构作为原模型特征融合模块中的特征金字塔结构,增强模型多尺度特征融合,改善网络对于安全帽检测的漏检率。采用更为先进的定位损失函数SIoU Loss计算损失,添加所需回归的向量角度,提高模型训练过程中预测框的收敛速度及效率。此外,创建了一个多元化环境下的安全帽数据集,在此数据集上实验表明,改进后检测算法对于原YOLOv7-tiny的mAP值提高了2.89%,检测速度提高了4.8帧/秒,实现了更加实时、准确的安全帽检测需求。 展开更多
关键词 安全帽检测 yolov7-tiny EPSANet Block tiny-BiFPN结构 SIoU Loss
下载PDF
基于PC-YOLOv7算法钢材表面缺陷检测 被引量:6
4
作者 赵春华 罗顺 +4 位作者 谭金铃 李谦 林彰稳 范彦坤 陈熙 《国外电子测量技术》 北大核心 2023年第9期137-145,共9页
针对钢材表面缺陷检测中存在检测精度低、模型尺寸大等问题,提出一种基于YOLOv7-tiny网络改进的算法模型PC-YOLOv7。首先将PC-ELAN结构替换主干网络中部分ELAN结构,降低模型参数量和模型尺寸;其次在特征融合网络(Neck)部分采用双向特征... 针对钢材表面缺陷检测中存在检测精度低、模型尺寸大等问题,提出一种基于YOLOv7-tiny网络改进的算法模型PC-YOLOv7。首先将PC-ELAN结构替换主干网络中部分ELAN结构,降低模型参数量和模型尺寸;其次在特征融合网络(Neck)部分采用双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)增强图像高层语义信息和低层特征信息融合性能,在输出端引入SPD-Conv提高模型对低分辨率物体的检测能力;最后,提出SimCS-CA模块并引入特征融合网络增强模型的特征表示性能。实验结果表明,PC-YOLOv7算法在NEU-DET数据集上平均精度均值(mAP)达到了78.5%,相比原始YOLOv7-tiny算法在模型尺寸降低情况下准确率和mAP分别提升了10.6%和4.2%,验证了改进算法的有效性。 展开更多
关键词 钢材表面缺陷 目标检测 yolov7-tiny PC-ELAN SimCS-CA
下载PDF
改进YOLOv7-tiny的手语识别算法研究 被引量:2
5
作者 韩晓冰 胡其胜 +1 位作者 赵小飞 秋强 《现代电子技术》 北大核心 2024年第1期55-61,共7页
在与听障人士进行交流时,常常会面临交流不便的困难,文中提出一种手语识别的改进模型来解决这个困难。该模型基于YOLOv7-tiny网络模型,并对其进行了多项改进,旨在提高模型的精度和速度。首先,通过对CBAM注意力机制的通道域进行改进,解... 在与听障人士进行交流时,常常会面临交流不便的困难,文中提出一种手语识别的改进模型来解决这个困难。该模型基于YOLOv7-tiny网络模型,并对其进行了多项改进,旨在提高模型的精度和速度。首先,通过对CBAM注意力机制的通道域进行改进,解决了因降维而造成的通道信息缺失问题,并将改进后的CBAM加入到YOLOv7-tiny的Neck层中,从而使模型更加精准地定位和识别到关键的目标;其次,将传统的CIoU边界框损失函数替换为SIoU边界框损失函数,以加速边界框回归的同时提高定位准确度;此外,为了减少计算量并加快检测速度,还将颈部层中的普通卷积模块替换为Ghost卷积模块。经过实验测试,改进后网络模型的平均精度均值(mAP)、精准率和召回率分别提升了5.31%、6.53%、2.73%,有效地提高了手语识别网络的检测精确度。 展开更多
关键词 手语识别 yolov7-tiny Ghost卷积 注意力机制 SIoU 边界框
下载PDF
基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC
6
作者 陈辉 陈成 《新余学院学报》 2024年第2期42-51,共10页
针对密集人群下口罩佩戴检测实时性差、难以部署到移动端的问题,提出基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC。该算法结合深度可分离卷积改进的SE注意力机制设计了一种轻量化特征提取模块,并结合BiFPN设计了一种加权特征融合... 针对密集人群下口罩佩戴检测实时性差、难以部署到移动端的问题,提出基于YOLOv7-tiny改进的口罩佩戴检测算法YOLOv7-DSC。该算法结合深度可分离卷积改进的SE注意力机制设计了一种轻量化特征提取模块,并结合BiFPN设计了一种加权特征融合模块。经实验验证,YOLOv7-DSC算法在口罩数据集上mAP为96.9%,与YOLOv7-tiny算法相比仅降低了0.5%;相比于YOLOv3-tiny、YOLOv4-tiny、YOLOv5s、MobileNetV3、ShuffleNetV2、GhostNet和Swin-Transformer算法在mAP上分别高出13.4%、11.2%、4.5%、5.7%、5.8%、4.2%和5.1%;在检测精度与YOLOv7-tiny算法相当的情况下,参数量和计算量分别减少了60%和55%,仅为2.4 M和6.0 G,极大地降低了硬件成本。 展开更多
关键词 口罩佩戴检测 yolov7-tiny yolov7-DSC 轻量化网络 注意力机制 特征融合
下载PDF
改进YOLOv7-tiny的轻量级红外车辆目标检测算法 被引量:1
7
作者 许晓阳 高重阳 《计算机工程与应用》 CSCD 北大核心 2024年第1期74-83,共10页
为了解决红外场景下车辆检测算法参数量与计算量大、识别精度低、小目标检测难度大的问题,提出了一种改进YOLOv7-tiny的轻量级红外车辆目标检测算法:KD-YOLO-DW。通过融合深度可分离卷积提出了ELAN-DW模块,极大地降低了网络参数量与计... 为了解决红外场景下车辆检测算法参数量与计算量大、识别精度低、小目标检测难度大的问题,提出了一种改进YOLOv7-tiny的轻量级红外车辆目标检测算法:KD-YOLO-DW。通过融合深度可分离卷积提出了ELAN-DW模块,极大地降低了网络参数量与计算量。通过在特征融合层引入GhostNet V2模块,提高了不同尺度特征的融合能力。采用动态非单调FM的WIoU损失函数,解决了红外数据集难易样本不平衡的问题,提高了轻量级算法对红外弱小目标的检测能力。联合残差思想提出跨尺度融合策略,提高了轻量级算法对不同尺度目标的检测效果,降低了小目标的漏检率。通过知识蒸馏对轻量化模型再次浓缩,进一步提高了模型对检测红外目标的准确性。实验结果表明,KD-YOLO-DW模型在参数量与计算量方面分别较YOLOv7-tiny模型下降了24.6%和16.7%,模型大小仅为9.2 MB,mAP分别提高了3.27和3.15个百分点,拥有更小的模型体积与更好的检测效果。 展开更多
关键词 红外目标检测 轻量级 知识蒸馏 损失函数 yolov7-tiny GhostNet V2
下载PDF
改进YOLOv7-Tiny农田环境下甜椒果实检测 被引量:3
8
作者 赵鹏飞 钱孟波 +2 位作者 周凯琪 单奕杰 吴浩宇 《计算机工程与应用》 CSCD 北大核心 2023年第15期329-340,共12页
针对在农田环境下甜椒果实的深度学习目标检测算法容易出现误检率较高、检测精度较低的问题,为提高农业生产管理系统以及农业机器人生产效率。基于YOLOv7-Tiny目标检测算法进行一系列改进。在YOLOv7-Tiny的主干中添加DBB(diverse branch... 针对在农田环境下甜椒果实的深度学习目标检测算法容易出现误检率较高、检测精度较低的问题,为提高农业生产管理系统以及农业机器人生产效率。基于YOLOv7-Tiny目标检测算法进行一系列改进。在YOLOv7-Tiny的主干中添加DBB(diverse branch block)模块;在三个输出特征层添加SimAM注意力机制;采用Bi-FPN特征融合机制,并增加跨通道特征融合,在P7层加入ASPP空洞空间卷积池化金字塔结构;采用数据集增强技术,对数据集图片进行扩充和图像处理,将800张甜椒果实数据集图片扩充至4800张。实验结果表明,在相同实验条件下改进YOLOv7-Tiny相较于YOLOv7-Tiny平均准确率(mAP)提高了2.21个百分点,视频检测速度32.82 FPS,改进YOLOv7-Tiny模型体积相较于YOLOv7-Tiny减小5.4 MB。改进YOLOv7-Tiny精度有明显提升,可实现快速、精准检测甜椒果实。 展开更多
关键词 甜椒检测 卷积神经网络 Bi-FPN yolov7-tiny
下载PDF
基于FG-YOLOv7-tiny算法的耐张线夹X光图像压接缺陷检测 被引量:1
9
作者 杨宇 高林 +2 位作者 唐永欣 王志 廖明艳 《湖北民族大学学报(自然科学版)》 CAS 2024年第1期51-58,共8页
为保证输电线路的安全可靠运行,电力巡检的重要任务是耐张线夹压接缺陷检测。为此,提出了快速幽灵YOLOv7-tiny(faster neural networks ghost convolution-you only look once version 7-tiny,FG-YOLOv7-tiny)算法进行耐张线夹压接缺陷... 为保证输电线路的安全可靠运行,电力巡检的重要任务是耐张线夹压接缺陷检测。为此,提出了快速幽灵YOLOv7-tiny(faster neural networks ghost convolution-you only look once version 7-tiny,FG-YOLOv7-tiny)算法进行耐张线夹压接缺陷检测。首先,构建包含5类常见压接缺陷的耐张线夹X光图像数据集;其次,使用快速神经网络(faster neural networks,FasterNet)替代YOLOv7-tiny的高效聚合网络(efficient layer aggregation networks,ELAN)以减小模型大小;最后,使用幽灵空间金字塔池化交叉阶段部分连接网络(ghost spatial pyramid pooling cross stage partial connection networks,GhostSPPCSPC)替换YOLOv7-tiny使用的空间金字塔池化交叉阶段部分连接网络以提升检测精度。实验结果表明,FG-YOLOv7-tiny算法的精度、平均精度均值分别达到91.30%、94.28%,相比于原始YOLOv7-tiny算法分别提升了3.99%、1.59%;模型大小为22.25 MB;检测速度达到172.41帧/s,能满足实时检测的要求。因此,FG-YOLOv7-tiny算法提升了检测精度,可实现耐张线夹压接缺陷的有效检测,并满足边缘设备部署的要求。 展开更多
关键词 yolov7-tiny 快速神经网络 耐张线夹 缺陷检测 X光图像
下载PDF
基于YOLOv7-tiny的轻量化海珍品检测算法
10
作者 陈俊逸 曹立杰 +2 位作者 吴军 罗佳璐 何植仟 《计算机应用》 CSCD 北大核心 2024年第S01期319-323,共5页
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-... 针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。 展开更多
关键词 海珍品 目标检测 yolov7-tiny 轻量化 k-means++
下载PDF
基于虚拟数据和旋转目标检测分析的大豆豆荚表型参数测量方法
11
作者 吴康磊 金秀 +4 位作者 饶元 李佳佳 王晓波 王坦 江朝晖 《江苏农业学报》 CSCD 北大核心 2024年第7期1245-1259,共15页
为解决传统大豆考种过程中人工测量大豆豆荚表型参数耗时费力的问题以及现有的自动化测量方式存在的人工数据标注需求量大、环境适应能力弱、计算代价高等问题,本研究提出一种基于虚拟数据集生成和旋转目标检测分析的豆荚关键表型参数... 为解决传统大豆考种过程中人工测量大豆豆荚表型参数耗时费力的问题以及现有的自动化测量方式存在的人工数据标注需求量大、环境适应能力弱、计算代价高等问题,本研究提出一种基于虚拟数据集生成和旋转目标检测分析的豆荚关键表型参数自动化测量方法,重点关注荚长和荚宽的测量。该方法基于YOLOv7-tiny提出一种改进的豆荚检测模型(CSL-YOLOv7-tiny),通过引入环形平滑标签使模型获得对旋转目标的检测能力,提升对无序摆放的狭长豆荚目标检测的质量。为避免人工标注训练数据,采用虚拟图像生成方法得到含标注信息的虚拟豆荚数据集和虚拟硬币与豆荚混合数据集。利用迁移学习策略,将模型从虚拟豆荚数据集迁移至虚拟硬币与豆荚混合数据集,积累模型对豆荚特征的提取能力。设计一种基于K-均值聚类的后处理方法,对检测到的旋转边界框进行分析,得到荚长和荚宽,以减少拍摄环境差异带来的测量误差。试验结果表明,在无任何训练数据标注的条件下,使用虚拟图像训练的CSL-YOLOv7-tiny对硬币和豆荚目标检测的最优mAP_(0.50)和mAP_(0.50∶0.95)分别达到了99.3%和78.0%,其模型大小和推理时间分别仅为12.92 MB和12.5 ms,荚长和荚宽测量的决定系数(R^(2))分别达到了0.94和0.86,与实际测量均值分别仅相差0.42 mm和0.02 mm。此外,通过对本研究提出的方法进行对比分析,验证了其在模型训练、轻量化部署以及不同考种环境适应能力上的优势。研究结果可为大豆豆荚表型参数的自动化、智能化测量系统的研发提供参考,为加速优质高产大豆的选育进程提供支撑。 展开更多
关键词 大豆考种 豆荚表型 虚拟数据 旋转目标检测 yolov7-tiny
下载PDF
基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法
12
作者 张相胜 杨骁 《图学学报》 CSCD 北大核心 2024年第3期446-453,共8页
针对橡胶密封圈表面缺陷传统检测效率低下的问题,提出一种改进YOLOv7-tiny的橡胶密封圈表面缺陷检测算法。在主干特征提取网络中引入PConv优化ELAN结构,增强算法特征提取能力,并减少参数量;在特征融合网络中引入全局注意力机制(GAM),利... 针对橡胶密封圈表面缺陷传统检测效率低下的问题,提出一种改进YOLOv7-tiny的橡胶密封圈表面缺陷检测算法。在主干特征提取网络中引入PConv优化ELAN结构,增强算法特征提取能力,并减少参数量;在特征融合网络中引入全局注意力机制(GAM),利用每一对三维通道、空间宽度和空间高度之间的注意力权重,在3个维度上捕捉重要特征来提高效率,增强算法特征融合能力;使用WIoU损失函数优化原边界框损失函数,通过符合情况的梯度增益分配策略,增强算法对检测目标的定位能力;增加P2小目标检测层,加强深层与浅层特征信息的融合,增强算法对小目标缺陷的检测能力。在O-Rings数据集进行实验对比,改进后的算法与YOLOv7-tiny算法比较,mAP提升了7.8%,达到了90.9%的检测精度,能够满足实际工业生产需求。 展开更多
关键词 yolov7-tiny 橡胶密封圈 缺陷检测 注意力机制 小目标检测层
下载PDF
基于改进YOLOv7-tiny的多光谱苹果表层缺陷检测
13
作者 化春键 孙明春 +2 位作者 蒋毅 俞建峰 陈莹 《激光与光电子学进展》 CSCD 北大核心 2024年第10期228-236,共9页
针对苹果表层存在多种缺陷类型、对不同缺陷的检测方法不同的问题,提出一种基于改进YOLOv7-tiny的缺陷检测模型,结合相机采集的RGB+NIR多光谱图像对苹果表层多种缺陷进行了检测和分类。首先,为了提取更多有效的特征信息,提高对缺陷的定... 针对苹果表层存在多种缺陷类型、对不同缺陷的检测方法不同的问题,提出一种基于改进YOLOv7-tiny的缺陷检测模型,结合相机采集的RGB+NIR多光谱图像对苹果表层多种缺陷进行了检测和分类。首先,为了提取更多有效的特征信息,提高对缺陷的定位能力,在主干网络中使用坐标注意力(CA)机制聚合坐标信息,同时在主干网络后添加上下文转换器(CoT)模块以增加全局感受野;其次,为了增强高效聚合网络的特征融合能力,将其与加权双向特征金字塔结合,调整结构中各分支的占比;最后,为了解决难易样本不均衡的问题,将损失函数更换为Focal-EIoU损失。改进后网络的平均精度均值(mAP)@0.5提升了1.2百分点,达到93.2%,识别速度为89.3 frame/s。研究结果表明,本文研究内容为苹果表层的缺陷检测提供了更加高效的方法,同时为苹果的分级提供了更加精确的依据。 展开更多
关键词 缺陷检测 苹果表层 多光谱图像 深度学习 yolov7-tiny 注意力机制
原文传递
融合视觉中心机制和并行补丁感知的遥感图像检测算法
14
作者 梁礼明 陈康泉 +2 位作者 王成斌 冯耀 龙鹏威 《光电工程》 CAS CSCD 北大核心 2024年第7期72-83,共12页
针对遥感图像存在复杂背景干扰、目标多尺度差异和微小目标提取难的问题,本文基于YOLOv7-tiny模型提出一种融合视觉中心机制和并行补丁感知的遥感图像检测算法。该算法一是引入显式视觉中心机制,构建像素点间的长距离依赖关系,丰富图像... 针对遥感图像存在复杂背景干扰、目标多尺度差异和微小目标提取难的问题,本文基于YOLOv7-tiny模型提出一种融合视觉中心机制和并行补丁感知的遥感图像检测算法。该算法一是引入显式视觉中心机制,构建像素点间的长距离依赖关系,丰富图像的整体语义信息,同时提升对目标纹理的提取性能;二是改进并行补丁感知模块,调整特征提取感受野,以适应不同目标尺度;三是设计多尺度特征融合模块,实现对多层特征的高效融合,提升模型推理速度。在公共数据集RSOD上进行实验,所提算法的准确率、召回率和平均准确率均值相较YOLOv7-tiny分别提升1.5%、2.4%和2.4%,此外在NWPUVHR-10和DOTA数据集上进行泛化性验证,结果表明本文算法具备较强的泛化性能。通过与不同算法对比分析,进一步体现本文算法性能的优越性。 展开更多
关键词 遥感图像 目标检测 yolov7-tiny 显式视觉中心机制 并行补丁感知
下载PDF
TTLD-YOLOv7:非结构化环境下茶树病害的检测算法
15
作者 俞淑燕 杜晓晨 +1 位作者 冯海林 李颜娥 《茶叶科学》 CAS CSCD 北大核心 2024年第3期453-468,共16页
茶树病害对茶树种植业和相关行业的影响极为严重。在动态而复杂的茶园环境中检测疾病的传统方法效率低下,检测效果不尽人意。本研究提出一种基于YOLOv7-tiny的模型,增强了茶树病害的细微检测能力。通过整合CoordConv和ECA信道关注机制,... 茶树病害对茶树种植业和相关行业的影响极为严重。在动态而复杂的茶园环境中检测疾病的传统方法效率低下,检测效果不尽人意。本研究提出一种基于YOLOv7-tiny的模型,增强了茶树病害的细微检测能力。通过整合CoordConv和ECA信道关注机制,本模型在卷积特征图中实现了更高的空间识别能力,并降低了背景噪声对特征识别的影响。进一步的改进包括采用归一化瓦瑟斯坦距离度量和去耦头,以提高对小病斑的检测能力。使用K-means算法根据茶树病斑的特殊性生成了新的锚框,提高了模型的精确性和通用性。对比分析表明,该模型优于现有模型FasterR-CNN、 SSD、 YOLOv5s、 YOLO-Tea、 YOLOv7-tiny和YOLOv7,平均精确度提高5.39个百分点,达到了93%。改进后的模型可应用于茶树病害监测。 展开更多
关键词 茶树病害 yolov7-tiny 自然环境 目标检测
下载PDF
轻量化YOLOv7-tiny的遥感图像小目标检测
16
作者 桑雨 李立权 李铁 《科学技术与工程》 北大核心 2024年第18期7726-7732,共7页
针对遥感图像小目标众多、目标检测器参数量大和检测效率低等问题,提出了一种改进的YOLOv7-tiny的轻量级遥感图像小目标检测模型。首先,针对原始模型中跨阶段局部空间金字塔池化网络复杂的碎片化操作,提出轻量级的空间金字塔池化结构来... 针对遥感图像小目标众多、目标检测器参数量大和检测效率低等问题,提出了一种改进的YOLOv7-tiny的轻量级遥感图像小目标检测模型。首先,针对原始模型中跨阶段局部空间金字塔池化网络复杂的碎片化操作,提出轻量级的空间金字塔池化结构来减少多余的卷积算子操作;其次,针对颈部网络冗余的模块化连接方式和小目标容易在深层特征丢失空间信息的问题,提出深层语义信息引导的单尺度预测头方法来进行小目标位置信息强化,并进一步减少颈部网络和头部网络的计算成本。在遥感图像数据集上展开实验,结果表明,改进后的模型比原始模型参数量降低49.6%,计算复杂度降低28.5%,推理速度提高73.1%,并优于现阶段其他主流轻量级目标检测器。 展开更多
关键词 目标检测 yolov7-tiny 轻量化 遥感图像 语义信息引导
下载PDF
基于改进YOLOv7-tiny的光伏电池缺陷检测算法
17
作者 徐威 李为相 +2 位作者 方志 孙圆 陈闯 《计算机工程与应用》 CSCD 北大核心 2024年第15期336-343,共8页
针对光伏电池对于太阳能转化效率不稳定的问题,提高光伏电池的质量,提出基于改进YOLOv7-tiny的光伏电池缺陷检测算法PSD-YOLO,在YOLOv7-tiny中引入轻量化卷积模块PSDConv。将GSConv中的DW卷积替换为Partial卷积,降低了内存访问量并提高... 针对光伏电池对于太阳能转化效率不稳定的问题,提高光伏电池的质量,提出基于改进YOLOv7-tiny的光伏电池缺陷检测算法PSD-YOLO,在YOLOv7-tiny中引入轻量化卷积模块PSDConv。将GSConv中的DW卷积替换为Partial卷积,降低了内存访问量并提高了检测速度;并且引入了GhostNetv2中的解耦全连接注意力(DFC)机制,在保持其可部署性的同时提高了轻量级算法对光伏电池复杂缺陷类型的检测能力;在损失函数部分,将原本的CIoU替换为EIoU,加速了收敛且提高了回归精度。实验结果表明,PSD-YOLO模型在参数量和计算量方面分别相较于YOLOv7-tiny模型下降了18.3%和16.7%,模型大小仅有4.9×10^(6),mAP@0.5提升了5.3个百分点,在实现更小模型体积的同时,达到了更高的检测性能。 展开更多
关键词 yolov7-tiny 光伏电池 缺陷检测 注意力机制 损失函数
下载PDF
基于YOLOv7-Tiny的车牌及放大号检测研究
18
作者 陈冠宇 尚雅层 《价值工程》 2024年第7期104-106,共3页
由于大型车辆的后车牌容易污损和遮挡,目前车牌号的识别对于这种情况有明显缺陷。提出将车牌放大号和车牌共同检测后再识别,提升车牌识别算法的适用性。本文基于YOLOv7-Tiny检测,算法先后采用更换主干网络和卷积模块实现模型轻量化,通... 由于大型车辆的后车牌容易污损和遮挡,目前车牌号的识别对于这种情况有明显缺陷。提出将车牌放大号和车牌共同检测后再识别,提升车牌识别算法的适用性。本文基于YOLOv7-Tiny检测,算法先后采用更换主干网络和卷积模块实现模型轻量化,通过改进损失函数来提升精度。实验表明,在YOLOv7-Tiny更换Mobilenetv3主干网络、GSConv卷积核和Focal-EIoU后,实现模型体积下降35%,参数量下降37%,运算量下降58%,从而实现一种轻量化的模型。 展开更多
关键词 放大号 yolov7-tiny Mobilenetv3 GSConv Focal-EioU
下载PDF
一种基于改进YOLOv7的相机标定特征点检测方法
19
作者 陈松 闫国闯 +2 位作者 马方远 王西泉 田晓耕 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期151-160,共10页
在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象... 在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象,针对受干扰(模糊、重噪声、极端姿态和大镜头失真)的标定图像难以进行特征点提取的问题,提出一种融合改进YOLOv7-tiny深度学习网络和Harris角点检测的相机标定特征点检测算法。针对原始网络在相机标定特征区域检测中的各种问题,引入Gather-and-Distribute信息聚合分发机制替换YOLOv7-tiny的加强特征提取网络(FPN)部分,提高不同层之间特征融合的能力;在主干特征提取部分后加入Biformer注意力机制,提高对小尺寸特征点候选区域的捕捉能力;在Head部分使用改进Efficient Decoupled Head解耦头,在提高精度的同时维持了较低的计算开销。测试结果表明,改进后的YOLOv7-tiny网络对特征点候选区域检测的准确率有显著的提高,达到95.3%,证明了改进后网络的有效性和可行性。 展开更多
关键词 相机标定 深度学习 yolov7-tiny 信息聚合分发机制 注意力机制 HARRIS算法
下载PDF
基于GE-YOLO的消化内镜下异常区域实时目标检测方法
20
作者 范姗慧 赖劲涛 +4 位作者 韦尚光 魏凯华 范一宏 吕宾 厉力华 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第4期385-398,共14页
消化内镜是临床常用的消化道检查手段,在消化道疾病的早期诊断和治疗中具有重要作用。但常规内镜检查需要由专业医生操作并实时观察视频以确定病灶点,极度依赖医生经验,主观性强且容易造成漏检和误检。本研究提出了一种基于改进YOLOv7-t... 消化内镜是临床常用的消化道检查手段,在消化道疾病的早期诊断和治疗中具有重要作用。但常规内镜检查需要由专业医生操作并实时观察视频以确定病灶点,极度依赖医生经验,主观性强且容易造成漏检和误检。本研究提出了一种基于改进YOLOv7-tiny的消化内镜下异常区域实时检测方法:GE-YOLO。该方法以YOLOv7-tiny为基础框架,使用两种不同的特征提取模块(C3模块和P-ELAN模块)构建骨干特征提取网络,提高网络的特征提取能力;使用坐标卷积(CoordConv)取代上采样中的普通卷积,进一步提高模型对病灶的定位精度;使用部分卷积(PConv)取代特征提取模块中的3×3普通卷积,在保证模型性能的同时减少了模型的计算量和参数量,提升了模型的检测速度;最后使用基于IoU与归一化Wasserstein距离的联合损失函数,提升模型对微小病灶的敏感度。该模型利用Kvasir-Capsule数据集中含标记的图像(共4172张)进行了训练和测试,其平均精确率、召回率和F1得分分别达到了94.2%、97.2%和0.957,检测速度为60帧/s,与YOLOv7-tiny相比,精确率、召回率和F1得分分别提升了2.8%、12.0%和0.075。实验结果表明,本研究提出的方法能实现高精度的消化道病灶实时检测,有望部署于临床内镜检查设备,在检查过程中为医生提供实时辅助,从而大大提高内镜检查效率,具有重要的学术价值和临床意义。 展开更多
关键词 GE-YOLO 实时目标检测 异常区域 消化内镜 yolov7-tiny
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部